Department: Electrical Engineering

Course Specification of Introduction to Robotics

I. (I. Course Identification and General Information:						
1.	Course Title:	Introduction to Robotics					
2.	Course Code & Number:	CCE43	37				
		С.Н				Total	
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total	
		2	-	2	-	3	
4.	Study level/ semester at which this course is	5th Year/ 1st Semester					
	offered:						
5.	Pre –requisite (if any):	BR103, BR007, ME121					
6.	Co –requisite (if any):	None					
7.	Program (s) in which the course is offered:	Comp	uter Engine	ering and	Control		
8.	Language of teaching the course:	Englis	h Language				
9.	Location of teaching the course:	Department of Electrical Engineering,			5,		
7.	Location of teaching the course.	Faculty of Engineering					
10.	Prepared By:	Prof. Abdulrrqeeb Asaad					
10.	ricparca by.	Asst. Prof. Dr. Adel Al-Shakiri					
11.	Date of Approval	April 2	2020				

II. Course Description:

This course aims to provide students with the basics of robotics and serial type robots. Robotic becomes the main part that is applicable to many modern industries and control applications. Course topics cover the basic components of robot systems, spatial representations and transformations, forward and inverse kinematics, manipulator dynamics, velocity propagation, Jacobean, trajectory planning, and robot programming and control. Practical lab and course project work develop student's experiences and skills

1. Prepared by
Prof.
Abdulrrqeeb
Asaad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

related to different design and implementation practices of robot manipulators as well as the proper robot safety procedures will be emphasized.

III.	Course Intended learning outcomes (CILOs) of the	Referenced
	course	PILOs
a1	Explain systematically the structure of a robotic manipulator and the operation of its main components.	A1
a2	Demonstrate safety considerations during installation, maintenance, programming, automatic operations of robotic systems.	A3
b1	Identify the main components of the robot including the controller, manipulator arm, teach pendant, standard operator panel, sensors, actuators, and end-of-arm-tooling or vacuum components.	B1
b2	Classify robotic systems according to their application, control system, arm geometry, actuators and sensors used, and end-of-arm tooling.	B2
c1	Write programs to perform various complex tasks and motions of robotic systems.	C1
d1	Search the literature for different information related to the given assignments in robotics.	D5

	(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:							
	Course Intended Learning Outcomes Teaching strategies Assessment Strategies							
a1-	Explain systematically the structure of a robotic manipulator and the operation of its main components.	Lectures, Interactive class discussions	Examinations, Home works and Assignments, Presentations					

1. Prepared by	Head of Department	Quality Assurance Unit	Dean of the Faculty	Academic Development
Prof.	Asst. Prof. Dr. Adel	Assoc. Prof. Dr.	Prof. Dr. Mohammed	Center & Quality Assurance
Abdulrrqeeb	Ahmed Al-Shakiri	Mohammad Algorafi	AL-Bukhaiti	Assoc. Prof. Dr. Huda Al-Emad
Asaad				

2. Asst. Prof. Dr. Adel Al-Shakiri

Sana'a University Faculty of Engineering Department: Floatrical Engi

Department: Electrical Engineering

Title of the Program: Computer Engineering and Control

a2-	Demonstrate safety considerations		Evaminations have would
	programming, automatic operations of	Lectures, Interactive class discussions	Examinations, home works and Assignments, Presentations
	robotic systems.		

	(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:						
	Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
b1-	Identify the main components of the robot including the controller, manipulator arm, teach pendant, standard operator panel, sensors, actuators, and end-of-arm-tooling or vacuum components.	Lectures, Laboratory Work, Interactive class discussions, Search.	Examinations, home works and Assignments, Presentations, Lab Reports				
b2-	- Classify robotic systems according to their application, control system, arm geometry, actuators and sensors used, and end-of-arm tooling.	Lectures, Laboratory Work, Interactive class discussions, Search	Examinations, home works and Assignments, Lab Reports, Presentations				

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:							
	Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
c1-	Write programs to perform various complex tasks and motions of robotic systems.		Examinations, home works and Assignments, Lab Reports, Presentations				

1. Prepared by	Head of Department	Quality Assurance Unit	Dean of the Faculty	Academic Development
Prof.	Asst. Prof. Dr. Adel	Assoc. Prof. Dr.	Prof. Dr. Mohammed	Center & Quality Assurance
Abdulrrqeeb	Ahmed Al-Shakiri	Mohammad Algorafi	AL-Bukhaiti	Assoc. Prof. Dr. Huda Al-Emad
Asaad				

2. Asst. Prof. Dr. Adel Al-Shakiri

Title of the Program:	Computer	Engineering a	nd Control

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
d1- Search the literature for different information related to the given assignments in robotics.		home works and Assignments, Lab & Project Reports, Presentations				

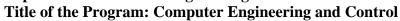
IV. Course Content:							
	A – Theoretic	al Aspect:					
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact Hours		
1.	Introduction	a1	 What is a Robot? What is Robotics? History of Robotics. Advantages and Disadvantages of Robots Robot Degrees of Freedom. Mass Production and Batch Manufacturing Flexible Manufacturing Systems Robotic Safety 	1	2		

1. Prepared by	Head of Department	Quality Assurance Unit	•	Academic Development
Prof.	Asst. Prof. Dr. Adel	Assoc. Prof. Dr.	Prof. Dr. Mohammed	Center & Quality Assurance
Abdulrrqeeb	Ahmed Al-Shakiri	Mohammad Algorafi	AL-Bukhaiti	Assoc. Prof. Dr. Huda Al-Emad
Asaad				

2. Asst. Prof. Dr. Adel Al-Shakiri

Sana'a University Faculty of Engineering Department: Electrical Engineering

Title of the Program: Computer Engineering and Control


2.	Robots Components and Specifications	a1, a2, b1	 Basic components of robot systems Manipulator geometry Wrists End effectors Robot Workspace Classifying robots by drive control systems Classifying robots by teaching methods Specifying robot by repeatability, precision, accuracy 	1	2
3.	Position & Orientation Analysis of a Rigid Body	a1, b1, b2	 Robot Coordinates Robot Reference Frames Robots Mechanisms Matrix Representation of a Point, a Vector, and a Frame in Space Homogeneous Transformation Matrices Inverse of Transformation Matrices 	2	4
4.	Robot Arm Kinematics	a1, a2, b1, b2	Direct Kinematic Problem	3	6

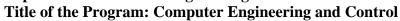
1. Prepared by Prof. Abdulrrqeeb Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

Sana'a University
Faculty of Engineering

Department: Electrical Engineering

			 Description of Position and Orientation for Different Robot Configurations DH Convention Direct Kinematics Examples Inverse Kinematic Problem (Type of Solution, Solvability, Multiple Solutions) Inverse Kinematics Solutions to Known Robot Manipulators. 		
5.	Robot Arm Dynamics	a1, a2, b1, b2	 Lagrange-Euler Formulation Newton-Euler Formation Examples of Manipulators Dynamic Models. Robot Simulations. 	1	2
6.	Planning of Manipulator Trajectories	a1, b1, b2	 Joint-interpolated Trajectories Cartesian Path Trajectories 3rd & 5th Order Polynomial Trajectories Planning Linear Segments with Parabolic Blends Collision-Free Path Planning. 	1	2


1. Prepared by
Prof.
Abdulrrqeeb
Asaad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

Sana'a University Faculty of Engineering

Department: Electrical Engineering

7.	Control of Robot Manipulators	a1, b1, b2	 Open-Loop and Closed-Loop Control P, PI, PD, PID Controllers Control of the Puma Robot Arm Multiple-Input and Multiple-Output Systems Model-Based Control Systems Resolved Motion Control Adaptive Control 	1	2
8.	End-of-Arm Tooling	a1, b1, b2	 Terms Power Sources Standard Grippers: Angular, Parallel Internal-external Gripping Vacuum, Magnetic, Flexible, Special Purpose 	1	2
9.	Introduction to Robotics Programming	a2, c1	 Robotics Programming Methods, Programming as a path in space, Motion Interpolation, Level & Task Level Languages, Robot languages. 	1	2
10.	Robotic Applications- based Image Processing	a1, a2, b1, b2, c1	 Low level & High-level vision, Sensing & Digitizing, Template Matching, 	1	2

1. Prepared by
Prof.
Abdulrrqeeb
Asaad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

	Number	16	32		
11.	Robot Safety	a2	Robots Require Respect (3Rs)People dealing with robots	1	2
			 Image processing & analysis, Segmentation, Edge detection, Object description & recognition, Interpretation, Applications. 		

B - Pra	B - Practical Aspect:							
Order	Tasks/ Experiments	Number of Weeks	Contact Hours	Learning Outcomes				
1	 Computer Lab: practices on Different computer tools: ROS, MATLAB/Simulink, Robot Studio. Transformations Constructing and analyzing different robotic configurations Kinematic and Dynamic analysis of robot manipulators Motion analysis of robotic systems. Different control schemes of robots. 	6	12	a1, b1, b2, c1				

 Prepared by 	Head of Department	Quality Assurance Unit	Dean of the Faculty	Academic Development
Prof.	Asst. Prof. Dr. Adel	Assoc. Prof. Dr.	Prof. Dr. Mohammed	Center & Quality Assurance
Abdulrrqeeb	Ahmed Al-Shakiri	Mohammad Algorafi	AL-Bukhaiti	Assoc. Prof. Dr. Huda Al-Emad
Asaad				

2. Asst. Prof. Dr. Adel Al-Shakiri

Sana'a University
Faculty of Engineering
Department: Electrical Engineering

Title of the Program: Computer Engineering and Control

	Robotics Lab:			
	 Set up a robot control system and check basic functions of the controller, 			
	 Drive a DC motor using a PWM power amplifier. 			
2	 Download a user C-code to the robot controller. 	6	12	a1, b1, b2, c1
	 Get acquainted with the C language and how it affects the robot. 			
	 Create actions based on sensor inputs. 			
	 Implement basic functions of sensor- based control on the lab robot 			
	Course Project:			
3	 Starts from week number 4. Design and Implementation of a robotic arm for a given task. A report must be prepared and a presentation must be delivered. Students work in groups of at least two. 	1	2	a1, a2, b1, b2, c1, d1
4	- Final Lab Exam	1	2	a1, b1, b2, c1
Nun	nber of Weeks /and Units Per Semester	14	28	

1. Prepared by
Prof.
Abdulrrqeeb
Asaad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

Title of the Program: Computer Engineering and Control

V. Teaching strategies of the course:

- Lectures,
- Laboratory Activities & Works,
- Assignments & Homework,
- Interactive class discussions
- Directed self- study,
- Search.

VI. Assessment methods of the course:

- Examinations
- home works and Assignments
- Lab & Project Reports,
- Presentations

VII	VII. Assignments & Reports:							
No.	Assignments	Aligned CILOs (symbols)	Week Due	Mark				
1	Report on Robots Applications	b2, d1	3 rd	1				
2	Report on Most-Known Configurations of Industrial Robots	a1, b2, d1	4 th	1				
3	Report on Actuators & Sensors used for Industrial Robots	a2, b1, b2, d1	5 th	1				

1. Prepared by Prof. Abdulrrqeeb Asaad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

7 Laboratory Reports a1, a2, b1, b2, c1 3 rd to 13 th Total						
6	Robot Safety	a2, d1	15 th	1		
5	Assignment: Programming, Control and Planning Methods of Industrial Robots	a2, b1, b2, c1	11 th & 12 th	2		
4	Assignment: Robot manipulators, kinematics and dynamics	a2, b1, b2, d1	6 th to 10 th	2		

VIII. Schedule of Assessment Tasks for Students During the Semester:								
No. Assessment Method Week I		Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes			
1. Quizzes 4 th , 10 th & 14 th		10	6.67%	a1, a2				
2.	Reports & Assignments	3 rd to 15 th	15	10%	a1, a2, b1, b2, c1, d1			
3.	Mid-Term Exam (Theoretical)	8 th	20	13.33%	a1, a2, b1, b2			
4.	Final Lab Exam (including course project Evaluation)	13 th & 14 th	30	20%	a1, a2, b1, b2, c1, d1			
5.	5. Final Exam 16 th		75	50%	a1, a2, b1, b2			
	Total		150	100%				

1. Prepared by Prof. Abdulrrqeeb Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

Department: Electrical Engineering

Title of the Program: Computer Engineering and Control

IX. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1. Craig, John J, R., 2005, Introduction to Robotics: Mechanics and Control, 3rd Edition, Pearson Education International Edition, Singapore.
- 2. Groover, M. P., Weiss, M., Nagel, R. N., and Odrey, N. G., 1986, Industrial Robotics, Technology, Programming, and Applications. New Delhi: McGraw-Hill.

2- Essential References.

- 1. Spong M.W., Hutchinson S. & Vidyasagar M, 2004, Robot Dynamics and Control, Second Edition, Wiley, India.
- 2. Saeed Niku, 2002, Introduction to Robotics: Analysis, Systems, Applications, 1st Edition, NJ, Prentice Hall.
- 3. Mittal, R. K., & Nagrath, I. J., 2008, Robotics and Control. New Delhi, India: Tata McGraw-Hill.
- 4. Lung-S-Wen Tsai, 1999, Robot Analysis, NY, John Wiley & Sons, Inc.
- 5. K.S. Fu, R.C. Gonzalez, and C.S.G. Lee, 1987, Robotics: Control, Sensing, Vision and Intelligence, NY, McGrawHill.
- 6. H.Asada and J. Slotive, 1986, Robot Analysis and Control, NY, John Wiley & Sons.
- 7. Lynch and Park, 2017, Modern Robotics, Cambridge, Cambridge University Press.
- 8. Thrun, Burgard, and Fox, 2005, Probabilistic Robotics, USA, MIT Press.

3- Electronic Materials and Web Sites etc.

Web Sites:

- 1. Teaching ROBOTC for Innovation First Robots, Carnegie Mellon Robotics Academy. http://www.robotc.net/vex_full/.
- 2. Introduction to Robotics Course (2DD2410) KTH https://www.kth.se/social/course/DD2410/

1. Prepared by
Prof.
Abdulrrqeeb
Asaad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Asst. Prof. Dr. Adel Al-Shakiri

Sana'a University Faculty of Engineering

Department: Electrical Engineering

Title of the Program: Computer Engineering and Control

3. Modern Robotics, Lynch and Park, Cambridge University Press, 2017, authors' site (free version, video lectures):

http://lynchandpark.org

- 4. Probabilistic Robotics, Thrun, Burgard, and Fox, MIT Press, 2005, authors' site http://www.probabilistic-robotics.org/
- 5. Robot Books

http://www.robotbooks.com

- 6. Center for Educational Resources (CERES) Project http://btc.montana.edu/ceres
- 7. Robotics research forum for academics and practitioners http://www.roboticscommunity.com/
- 8. Online robotics links

http://chinese-school.netfirms.com/robot-resources.html

9. National Robotics Education Foundation (NREF) http://www.the-nref.org/

10. Robot Research and Information

http://www.autopenhosting.org/robots/research.html

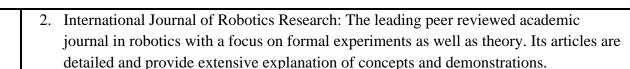
11. RoboRealm: A free application for use in machine vision, image analysis, and robotic vision systems

http://www.roborealm.com/

12. NASA Robotics

https://robotics.nasa.gov/links/resources.php

Journals:


1. IEEE Transactions on Robotics: Peer reviewed academic journal in the field of robotics, though it tends to emphasis mathematical and theoretical approaches.

1. Prepared by
Prof.
Abdulrrqeeb
Asaad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Asst. Prof. Dr. Adel Al-Shakiri

X.	Course Policies:
1	Class Attendance: The students should have more than 75 % of attendance according to rules and regulations of the Faculty.
2	Tardy: The students should respect the timing of attending the lectures. They should attend within 10 minutes from starting of the lecture.
3	Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam.
4	Assignments & Projects: The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.
5	Cheating: If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquires.
6	Plagiarism:

1. Prepared by
Prof.
Abdulrrqeeb
Asaad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

	The student will be terminated from the Faculty, if one student attend the exam on another behalf according to the policy, rules and regulations of the university.
7	 Other policies: All the teaching materials should be kept out the examination hall. The mobile phone is not allowed. There should be a respect between the student and his teacher.

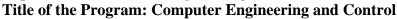
1. Prepared by Prof. Abdulrrqeeb Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

Department: Electrical Engineering

Title of the Program: Computer Engineering and Control

Course Plan of Introduction to Robotics


I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Prof. Abdurraqeeb Asaad Dr. Adel Al-Shakiri	Office Hours					
Location& Telephone No.	Department of Electrical Engineering	SAT SUN MON TUE WED TH				THU	
E-mail	Ashakiri62@gmail.com						

II. Course Identification and General Information:								
1.	Course Title:	Introduction to Robotics						
2.	Course Number & Code:	CCE437						
			C.	Н		Total		
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total		
			-	2	-	3		
4.	Study level/year at which this course is offered:	5 th Year/ 1 st Semester						
5.	Pre –requisite (if any):	BR103, BR007, ME121						
6.	Co –requisite (if any):	None						
7.	7. Program (s) in which the course is offered Computer Engineering and Control		ontrol					
8.	Language of teaching the course:	English Language.						
9.	System of Study:	Semesters						
10.	Mode of delivery:	Regular Attendance to Classes.						
11.	Location of teaching the course:	Faculty of Engineering.						

1. Prepared by	Head of Department	Quality Assurance Unit	Dean of the Faculty	Academic Development
Prof.	Asst. Prof. Dr. Adel	Assoc. Prof. Dr.	Prof. Dr. Mohammed	Center & Quality Assurance
Abdulrrqeeb	Ahmed Al-Shakiri	Mohammad Algorafi	AL-Bukhaiti	Assoc. Prof. Dr. Huda Al-Emad
Asaad				

2. Asst. Prof. Dr. Adel Al-Shakiri

Department: Electrical Engineering

Course Description: III.

This course aims to provide students with the basics of robotics and serial type robots. Robotic becomes the main part that is applicable to many modern industries and control applications. Course topics cover the basic components of robot systems, spatial representations and transformations, forward and inverse kinematics, manipulator dynamics, velocity propagation, Jacobean, trajectory planning, and robot programming and control. Practical lab and course project work develop student's experiences and skills related to different design and implementation practices of robot manipulators as well as the proper robot safety procedures will be emphasized.

IV. Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
 - 1. Explain systematically the structure of a robotic manipulator and the operation of its main components.
 - 2. Demonstrate safety considerations during installation, maintenance, programming, automatic operations of robotic systems.
 - 3. Identify the main components of the robot including the controller, manipulator arm, teach pendant, standard operator panel, sensors, actuators, and end-of-arm-tooling or vacuum components.
 - **4.** Classify robotic systems according to their application, control system, arm geometry, actuators and sensors used, and end-of-arm tooling.
 - 5. Write programs to perform various complex tasks and motions of robotic systems.
 - **6.** Search the literature for different information related to the given assignments in robotics.

1. Prepared by Prof. Abdulrrqeeb Asaad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

Sana'a University
Faculty of Engineering

Department: Electrical Engineering

Title of the Program: Computer Engineering and Control

V. Course Content: **A – Theoretical Aspect: Units/Topics** Number Contact Order **Sub Topics List** List of Weeks **Hours** - What is a Robot? - What is Robotics? - History of Robotics. Advantages and Disadvantages of **Robots** 1st 1. 2 Introduction Robot Degrees of Freedom. Mass Production and Batch Manufacturing - Flexible Manufacturing Systems Robotic Safety Basic components of robot systems Manipulator geometry - Wrists Robots End effectors 2nd 2. 2 Components and Robot Workspace Specifications - Classifying robots by drive control systems Classifying robots by teaching methods

1. Prepared by
Prof.
Abdulrrqeeb
Asaad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

Sana'a University Faculty of Engineering Department: Electrical Engineering

Title of the Program: (Computer	Engineering and	l Control

		 Specifying robot by repeatability, precision, accuracy 		
3.	Position & Orientation Analysis of a Rigid Body	 Robot Coordinates Robot Reference Frames Robots Mechanisms Matrix Representation of a Point, a Vector, and a Frame in Space Homogeneous Transformation Matrices Inverse of Transformation Matrices 	3 rd ,4 th	4
4.	Robot Arm Kinematics	 Direct Kinematic Problem Description of Position and Orientation for Different Robot Configurations DH Convention Direct Kinematics Examples Inverse Kinematic Problem (Type of Solution, Solvability, Multiple Solutions) Inverse Kinematics Solutions to Known Robot Manipulators. 	5 th ,6 th ,7 th	6
5.	Mid-Term Exam	- ALL Previous Topics	8 th	2
6.	Robot Arm Dynamics	Lagrange-Euler FormulationNewton-Euler Formation	9 th	2

1. Prepared by
Prof.
Abdulrrqeeb
Asaad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

		 Examples of Manipulators Dynamic Models. 		
		 Robot Simulations. 		
7.	Planning of Manipulator Trajectories	 Joint-interpolated Trajectories Cartesian Path Trajectories 3rd & 5th Order Polynomial Trajectories Planning Linear Segments with Parabolic Blends Collision-Free Path Planning. 	10 th	2
8.	Control of Robot Manipulators	 Open-Loop and Closed-Loop Control P, PI, PD, PID Controllers Control of the Puma Robot Arm Multiple-Input and Multiple-Output Systems Model-Based Control Systems Resolved Motion Control Adaptive Control 	11 th	2
9.	End-of-Arm Tooling	 Terms Power Sources Standard Grippers: Angular, Parallel Internal-external Gripping Vacuum, Magnetic, Flexible, Special Purpose 	12 th	2

1. Prepared by Prof. Abdulrrqeeb Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

Sana'a University
Faculty of Engineering
Department: Electrical Engineering

Title of the Program:	Computer	Engineering	and Control
------------------------------	----------	--------------------	-------------

10.	Introduction to Robotics Programming	 Motion Interpolation, Level & Task Level Languages, Robot languages. Low level & High-level vision, Sensing & Digitizing, 	13 th	2
11.	Robotic Applications- based Image Processing	 Template Matching, Image processing & analysis, Segmentation, Edge detection, Object description & recognition, Interpretation, Applications. 	14 th	2
12.	Robot Safety	Robots Require Respect (3Rs)People dealing with robots	15 th	2
13.	Final Exam	- ALL Topics	16 th	2
	Number of Wo	eeks /and Units Per Semester	16	32

B - Pı	B - Practical Aspect:					
Order	Tasks/ Experiments	Number of Weeks	Contact Hours			
1	Computer Lab: practices on	6	12			

1. Prepared by	Head of Department	Quality Assurance Unit	Dean of the Faculty	Academic Development
Prof.	Asst. Prof. Dr. Adel	Assoc. Prof. Dr.	Prof. Dr. Mohammed	Center & Quality Assurance
Abdulrrqeeb	Ahmed Al-Shakiri	Mohammad Algorafi	AL-Bukhaiti	Assoc. Prof. Dr. Huda Al-Emad
Asaad				

2. Asst. Prof. Dr. Adel Al-Shakiri

	 Different computer tools: ROS, MATLAB/Simulink, Robot Studio. 		
	- Transformations		
	 Constructing and analyzing different robotic configurations 		
	 Kinematic and Dynamic analysis of robot manipulators 		
	 Motion analysis of robotic systems. 		
	 Different control schemes of robots. 		
	Robotics Lab:		
	 Set up a robot control system and check basic functions of the controller, 		
	 Drive a DC motor using a PWM power amplifier. 		
2	 Download a user C-code to the robot controller. 	6	12
	 Get acquainted with the C language and how it affects the robot. 		
	 Create actions based on sensor inputs. 		
	 Implement basic functions of sensor-based control on the lab robot 		
	Course Project:		
3	 Starts from week number 4. Design and Implementation of a robotic arm for a given task. A report must be prepared and a presentation must be delivered. 	1	2
	Students work in groups of at least two.		

1. Prepared by
Prof.
Abdulrrqeeb
Asaad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

	0	0	0	

4	- Final Lab Exam	1	2
	Number of Weeks /and Units Per Semester		28

VI. Teaching strategies of the course:

- Lectures,
- Laboratory Activities & Works,
- Assignments & Homework,
- Interactive class discussions
- Directed self- study,
- Search.

VII. Assessment methods of the course:

- Examinations
- home works and Assignments
- Lab & Project Reports,
- Presentations

V	VIII.Assignments & Reports:						
No.	Assignments	Aligned CILOs (symbols)	Week Due	Mark			
1	Report on Robots Applications	b2, d1	3 rd	1			
2	Report on Most-Known Configurations of Industrial Robots	a1, b2, d1	4 th	1			

1. Prepared by Prof. Abdulrrqeeb Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

Total						
	7	Laboratory Reports	a1, a2, b1, b2, c1	3 rd to 13 th	7	
	6	Robot Safety	a2, d1	15 th	1	
	5	Assignment: Programming, Control and Planning Methods of Industrial Robots	a2, b1, b2, c1	11 th & 12 th	2	
	4	Assignment: Robot manipulators, kinematics and dynamics	a2, b1, b2, d1	6 th to 10 th	2	
	3	Report on Actuators & Sensors used for Industrial Robots	a2, b1, b2, d1	5 th	1	

IX. Schedule of Assessment Tasks for Students During the Semester:				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment
1.	Quizzes	4 th , 10 th & 14 th	10	6.67%
2.	Reports & Assignments	3 rd to 15 th	15	10%
3.	Mid-Term Exam (Theoretical)	8 th	20	13.33%
4.	Final Lab Exam (including course project Evaluation)	13 th & 14 th	30	20%
5.	Final Exam	16 th	75	50%
	Total			100%

1. Prepared by Prof. Abdulrrqeeb Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

Department: Electrical Engineering

Title of the Program: Computer Engineering and Control

X. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1. Craig, John J, R., 2005, Introduction to Robotics: Mechanics and Control, 3rd Edition, Pearson Education International Edition, Singapore.
- 2. Groover, M. P., Weiss, M., Nagel, R. N., and Odrey, N. G., 1986, Industrial Robotics, Technology, Programming, and Applications. New Delhi: McGraw-Hill.

2- Essential References.

- 1. Spong M.W., Hutchinson S. & Vidyasagar M, 2004, Robot Dynamics and Control, Second Edition, Wiley, India.
- 2. Saeed Niku, 2002, Introduction to Robotics: Analysis, Systems, Applications, 1st Edition, NJ, Prentice Hall.
- 3. Mittal, R. K., & Nagrath, I. J., 2008, Robotics and Control. New Delhi, India: Tata McGraw-Hill.
- 4. Lung-S-Wen Tsai, 1999, Robot Analysis, NY, John Wiley & Sons, Inc.
- 5. K.S. Fu, R.C. Gonzalez, and C.S.G. Lee, 1987, Robotics: Control, Sensing, Vision and Intelligence, NY, McGrawHill.
- 6. H.Asada and J. Slotive, 1986, Robot Analysis and Control, NY, John Wiley & Sons.
- 7. Lynch and Park, 2017, Modern Robotics, Cambridge, Cambridge University Press.
- 8. Thrun, Burgard, and Fox, 2005, Probabilistic Robotics, USA, MIT Press.

3- Electronic Materials and Web Sites etc.

Web Sites:

- 1. Teaching ROBOTC for Innovation First Robots, Carnegie Mellon Robotics Academy. http://www.robotc.net/vex_full/.
- 2. Introduction to Robotics Course (2DD2410) KTH
- 3. https://www.kth.se/social/course/DD2410/

1. Prepared by
Prof.
Abdulrrqeeb
Asaad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Asst. Prof. Dr. Adel Al-Shakiri

Sana'a University Faculty of Engineering

Department: Electrical Engineering

Title of the Program: Computer Engineering and Control

- 4. Modern Robotics, Lynch and Park, Cambridge University Press, 2017, authors' site (free version, video lectures):
- 5. http://lynchandpark.org
- 6. Probabilistic Robotics, Thrun, Burgard, and Fox, MIT Press, 2005, authors' site http://www.probabilistic-robotics.org/
- 7. Robot Books http://www.robotbooks.com
- 8. Center for Educational Resources (CERES) Project http://btc.montana.edu/ceres
- 9. Robotics research forum for academics and practitioners http://www.roboticscommunity.com/
- 10. Online robotics links http://chinese-school.netfirms.com/robot-resources.html
- 11. National Robotics Education Foundation (NREF) http://www.the-nref.org/
- 12. Robot Research and Information http://www.autopenhosting.org/robots/research.html
- 13. RoboRealm: A free application for use in machine vision, image analysis, and robotic vision systems

 http://www.roborealm.com/
- 14. NASA Robotics
- 15. https://robotics.nasa.gov/links/resources.php

Journals:

1. IEEE Transactions on Robotics: Peer reviewed academic journal in the field of robotics, though it tends to emphasis mathematical and theoretical approaches.

1. Prepared by
Prof.
Abdulrrqeeb
Asaad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Asst. Prof. Dr. Adel Al-Shakiri

2. International Journal of Robotics Research: The leading peer reviewed academic journal in robotics with a focus on formal experiments as well as theory. Its articles are detailed and provide extensive explanation of concepts and demonstrations.

X	XI. Course Policies:				
1	Class Attendance: The students should have more than 75 % of attendance according to rules and regulations of the Faculty.				
2	Tardy: The students should respect the timing of attending the lectures. They should attend within 10 minutes from starting of the lecture.				
Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented acc to rules and regulations of the faculty for mid-term exam and final exam.					
4	Assignments & Projects: The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.				
5	Cheating: If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquires.				
6	Plagiarism:				

1. Prepared by
Prof.
Abdulrrqeeb
Asaad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri

	The student will be terminated from the Faculty, if one student attend the exam on another behalf according to the policy, rules and regulations of the university.			
7	 Other policies: All the teaching materials should be kept out the examination hall. The mobile phone is not allowed. There should be a respect between the student and his teacher. 			

1. Prepared by Prof. Abdulrrqeeb Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Asst. Prof. Dr. Adel Al-Shakiri