Title of the Program: Computer Engineering and Control

Course Specification of Industrial Automation & SCADA

Systems

I. (I. Course Identification and General Information:							
1.	Course Title: Industrial Automation & SCADA Systems							
2.	Course Code & Number:	CCE438						
			C.	H		Total		
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total		
			-	2	-	3		
4.	Study level/ semester at which this course is offered:	Fifth Level / Second Semester						
5.	Pre –requisite (if any):	PLC, Programming II, Control (1)						
6.	Co –requisite (if any):	None.						
7.	Program (s) in which the course is offered:	Computer & Control						
8.	Language of teaching the course:	English						
9.	Location of teaching the course:	Electrical Engineering Department						
10.	Prepared By:	Assoc. Prof. Dr. Farouk AL-Fuhaidy						
11.	Date of Approval	2020						

II. Course Description:

This course introduces the development trends of different automation systems such as direct digital control (DDC), distributed control systems (DCS), Field control systems (FCS), supervisory control and data acquisition (SCADA) and PLC networking. It covers the following topics; Concepts, principles, and relationships of automated assembly devices, reviews the different industrial control networks /protocols such as Modbus, CAN, ASI, Profibus and Foundation Fieldbus. Furthermore, the recent technologies in the field of industrial automation will be presented, programmable logic controllers (PLCs), flexible manufacturing systems (FMS), CNC machines, and SCADA systems & typical DCS control systems. The laboratory sessions support the course by providing students with

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Computer Engineering and Control

industrial automation experiments for controlling, configuring, and programming industrial systems using PLC and SCADA systems.

III	Course Intended learning outcomes (CILOs) of the	Referenced	
	course	PILOs	
a1	Demonstrate knowledge and understands of various reasons for employing automation in a manufacturing environment and describe concept of CNC machines and distributed control systems (DCS) and their applications.	A2	
a2	Describe the fundamentals of typical DCS control systems and SCADA Technologies.	A3	
b1	Design an automated control system to meet desired issues and specifications related to industrial environment.	B1, B4	
c1	Use a Programmable Logic Controller (PLC) and embedded microcontroller, to perform specified control functions.	C2, C3	
c2	Simulate simple industrial automation functions using SCADA system simulation tool.	C4	
d1	function effectively while working individually or within project's teams.	D1	

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:				
Cours	se Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
a1-	Demonstrate knowledge and understands of various	·	Examinations,	
	reasons for employing automation in a manufacturing environment and describe concept of CNC machines and distributed	Practical Lab. Work, Reading Materials & Web-sites searches, Group Works and Discussions,	HomeworkPresentations,Individual-Lab. and group project reports	

Prepared by
Assoc. Prof. Dr.
Farouk AL-
Fuhaidy

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Computer Engineering and Control

control systems (DCS) a their applications.	ad	
a2- Describe the fundamentals typical DCS control system and SCADA Technologies.		 Examinations, Homework Presentations, Individual-Lab. and group project reports

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
	■ Lectures,	■ Examinations,		
b1- Design an automated control	■ Computer Laboratory	■ Homework,		
system to meet desired issues	Sessions,	Laboratory reports		
and specifications related to	■ Practical Laboratory Work,	presentations,		
industrial environment.	■ Group Works,	Individual-Lab. and		
	■ Projects.	group project reports		

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes Teaching strategies Assessment Strategies					
c1- Use a Programmable Logic Controller (PLC) and embedded microcontroller, to perform specified control functions.	Lectures,Practical Laboratory Work,Group Works	 Examinations, Laboratory reports, Presentations, Individual-Lab. and group project reports. 			

Prepared by
Assoc. Prof. Dr.
Farouk AL-
Fuhaidy

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

c2- Simulate simple industrial automation functions using SCADA system simulation tool.

- Lectures,
- Computer Laboratory Work,
- Practical Lab. Work, Group Works, Projects.
- Examinations,
- Laboratory reports, Presentations,
- Individual-Lab. and group project reports.

	(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:					
	Course Intended Learning Outcomes Teaching strategies Assessment Strategies					
d1-	function effectively while working individually or within project's teams.	■ laboratory works	 Presentations, Individual-Lab. and group Project Reports Presentation. 			

IV. Course Content: **A – Theoretical Aspect:** Number **Units/Topics** Learning contact Order **Sub Topics List** of List **Outcomes** hours Weeks Course orientations, • overview on industrial automation, Course concepts, principles, requirements, 1. Orientation and a1, a2 1 2 goals, equipment and software Introduction tools, relationships of automated assembly devices, and applications Principles of Copper Cable **Industrial Data** 2. a1, a2, b1 1.5 3 Fiber Optics Communications and Networking:

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Computer Engineering and Control

			 RS-232 Overview, RS-485 Overview, Current loop and RS-485 Converters Overview, TCP/IP Overview Modbus Overview Fundamentals of DNP3 Fundamentals of IEC 60870-5 Industrial Ethernet Overview AS-interface (AS-i) Overview, DeviceNet Overview, Profibus PA/DP/FMS Overview, Foundation Fieldbus Overview, Modbus Plus Protocol Overview Data Highway Plus/DH485 Overview HART Overview Wireless Technologies 		
3.	Computer Based Control Systems and Fundamentals of Numerical Control (NC) and CNC Machines:	a1, a2, b1	 Introduction to computer-based measurement and control systems Role of computers in measurement and process control. Basic components of computer-based measurement and control systems NC Systems, Principles, Types, NC Controllers, and Components of NC Systems, 	2.5	5

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Computer Engineering and Control

			 CNC machine, Principles, Controllers, Programming, and Implementation. 		
4.	Trends of industrial automation technologies:	a1, a2, b1, c1	■ An Overview on Direct Digital Control (DDC), Distributed Control System (DCS), PLC Networking, Field Control System (FCS), and SCADA System.	1	2
5.	Sub-systems in an industrial control system:	a1, a2, b1	■ Emphasizing on automation point of view considering different modules such as DCS, ESD, F&G, SIS, etc.	1	2
6.	An Overview on PLC structures and corresponding languages:	a1, a2, b1, c1	 Processors, Power Supply and Programming Devices. Memory System and I/O Interaction. Digital Input/ Output Systems. Analog Input/ Output Systems Digital Input/ Output Systems Fundamentals of PLC Programming High Security PLC Systems HMI (Human Machine Interface). 	1	2
7.	An Overview of Distributed Control Systems (DCS):	a1, a2, b1, c1	 Introduction Basic concepts of Distributed Computing Evolution of Distributed Computing System Present market trends in DCS 	1.5	3

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Computer Engineering and Control

			 Basic DCS specification General description of a commercial DCS Advantage of DCS systems DCS selection criteria DCS architecture Programming of DCS systems Alarm system management Distributed control system (DCS) configuration Distributed control system applications. 		
8.	An overview of SCADA systems:	a1, a2, b1, c1, c2	 Introduction Basics of SCADA system SCADA key features Remote terminal units (RTUs) Typical requirements for an RTU system PLCs used as RTUs Consideration and benefits of SCADA system DCS versus SCADA terminology SCADA software package Communications for DCS & SCADA systems 	1.5	3
9.	Typical distributed control systems and SCADA systems:	a1, a2, b1, c1, c2	 Honeywell PlantScape system Foxboro I/A series distributed control systems Delta V system 	1.5	3

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Computer Engineering and Control

B - Practical Aspect:							
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes			
1.	Overview on Computer usage: MATLAB, SIMULINK, PLC Networking, LabVIEW (National Instruments), SIMATIC STEP7- Engineering Software (Siemens), SIMATIC WinCC-HMI Software (Siemens) Overview on PLC and Microcontroller Equipment	2	4	a1, a2, c2, d1			
2.	Overview of CAD/CAM software (Solidworks and MasterCAM): - Installation, Modeling, Requirements and Application - CAD/CAM data exchange - 2D and 3D Machining (milling & turning) - NC file generation in CAD/CAM	4	8	a1, a2, b1, c1, c2, d1			

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2


2

28

1

1

14

3.	Exercises in Control and Microcontroller Labs.Water tank system,Robotic arm,Filling and packaging system,	2	4	a1, a2, b1, c1, c2, d1
4.	SCADA/HMI system Packages, programming and simulation Typical DCS and SCADA Systems, Honeywell and Foxboro, etc. Development of Simple SCADA System.	4	6	a1, a2, b1, c1, c2, d1

V. Teaching strategies of the course:

Number of Weeks /and Units Per Semester

• Lectures,

5.

6.

• Assignments,

Review

- Computer-based Laboratory Sessions,
- Practical Lab. Work,
- Reading Materials & Web-sites searches,
- Group Works and Discussions,

Project Presentation

• Projects.

VI.	Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	Industrial Networking	a1, a2, b1, c1, d1	3 rd	1
2.	NC and CNC Machines	a1, a2, b1, c1, d1	4^{th} to 6^{th}	3

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

a1, a2, b1,

c1, c2, d1 a1, a2, b1,

c1, c2, d1

Title of the Program: Computer Engineering and Control

3.	Trends in industrial Automation	a1, a2, b1, c1, d1	7^{th}	1
4.	PLC Structures and Programming	a1, a2, b1, c1, d1	9 th	2
5.	DCS	a1, a2, b1, c1, d1	10 th & 11 th	2
6.	SCADA & Typical DCS Systems	a1, a2, b1, c1, d1	12 th & 13 th	3
7.	Design of Industrial Automated Systems	a1, a2, b1, c1, d1	14 th & 15 th	3
	Total			15

VII. Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes		
1.	Assignments	3 rd to 15 th	15	10%	a1, a2, b1, c1, d1		
2.	Laboratory and Computer-based Works	3 rd to 12 th	15	10%	a1, a2, b1, c1, c2, d1		
3.	Project Presentation	13 th	15	10%	a1, a2, b1, c1, c2, d1		
4.	Mid-Term Exam (Theoretical)	8 th	15	10%	a1, a2, b1, c1		
5.	Final Exam (Practical)	15 th	15	10%	a1, a2, b1, c1, c2, d1		
6.	Final Exam (Theoretical)	16 th	75	50%	a1, a2, b1, c1, c2		
	Total		150	100%			

VIII. Learning Resources:

- Written in the following order: (Author Year of publication Title Edition Place of publication Publisher).
- 1- Required Textbook(s) (maximum two).
 - 1- J. Love, 2007, Process Automation Hand Book, Springer.
 - 2- Gordon Clarke, 2004, Practical Modern SCADA Protocols.
 - **3-** Groover, M. P. (2008) Automation, Production Systems, and Computer-Integrated Manufacturing, 3rd Ed. Pearson Education. ISBN 0-13-239321-2.
 - **4-** IDC Technologies, Practical Distributed Control Systems (DCS), Western Australia.

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Computer Engineering and Control

5- IDC Technology, (2012)- Design of Industrial Automation Functional Specifications for PLCs, DCSs and SCADA Systems- 1st Edition- West Perth, Western Australia- ISBN: 978-1-922062-01-7

2- Essential References.

- 1- John Park, 2003, Practical Data Acquisition for Instrumentation and Control Systems.
- 2- Steve Mackay, 2004, Practical Industrial Data Networks.
- 3- L. A. Bryan, E. A. Bryan, Programmable Controllers Selected Applications.
- 4- Stuart A. Boyer, ISA, SCADA: Supervisory Control and Data Acquisition.
- **5-** Dale E. Seborg, Duncan A. Mellichamp, Thomas F. Edgar, John Wiley & Sons, Process Dynamics and Control.

3- Electronic Materials and Web Sites etc.

- 1- www.control.com
- 2- www.plcs.net
- **3-** www.pacontrol.com
- **4-** www.triplc.com
- 5- www.seimens.com
- **6-** http://plc-training-rslogix-simulator.soft32.com/free-download/
- **7-** www.plcsimulator.net/
- **8-** http://scada.winsite.com
- **9-** http://sourceforge.net/projects/scadabr/files/latest/download?source=directory
- 10- Lecture Prepared by the Lecturer

IX. Course Policies:

Class Attendance:

1. A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic

Tardy:

2. For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

University of Sana'a
Faculty of Engineering

Department: Electrical Engineering

Title of the Program: Computer Engineering and Control

	Exam Attendance/Punctuality:
3.	A student should attend the exam on time. He is Permitted to attend an exam half one hour from
3.	exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam-
	Assignments & Projects:
4.	The assignment is given to the students after each chapter; the student has to submit all the
	assignments for checking on time-
	Cheating:
5.	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty-
	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student. If the
6.	examination committee proofed a plagiarism of a student, he will be disengaged from the Faculty.
	The final disengagement of the student from the Faculty should be confirmed from the Student
	Council Affair of the university.
	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the
7.	student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek					
By	A. Barakat					
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi					
	Name of Reviewer from the Department: Asst. Prof. Dr. Adel Ahmed Al-Shakiri					
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa					
	Assoc. Prof. Dr. Ahmed Mujahed					
	Asst. Prof. Dr. Munasar Alsubri					

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Computer Engineering and Control

Template for Course Plan of Industrial Automation & SCADA Systems

I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Assoc. Prof. Dr. Farouk AL-Fuhaidy	Office Hours					
Location& Telephone No.	777909815	SAT	SUN	MON	TUE	WED	THU
E-mail	farouqakh@gmail.com						_

II.	II. Course Identification and General Information:							
1-	Course Title:	Industrial Automation & SCADA Systems						
2-	Course Number & Code:	CCE438						
			C.1	H		Total		
3-	Credit hours:	Th.	Tu.	Pr.	Tr.	Total		
		2	-	2	-	3		
4-	Study level/year at which this course is offered:	Fifth Year/ Second Semester						
5-	Pre –requisite (if any):	PLC, Pr	ogramming	; II, Contr	ol (1)			
6-	Co –requisite (if any):	None.						
7-	Program (s) in which the course is offered	Computer & Control						
8-	Language of teaching the course:	English						
9-	System of Study:	Regular						
10-	Mode of delivery:	Face-to-face with Lab. Work						
11-	Location of teaching the course:	Electric	al Engineer	ing Depar	tment			

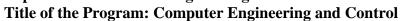
Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

University of Sana'a
Faculty of Engineering

Department: Electrical Engineering

Title of the Program: Computer Engineering and Control

III. Course Description:


This course introduces the development trends of different automation systems such as direct digital control (DDC), distributed control systems (DCS), Field control systems (FCS), supervisory control and data acquisition (SCADA) and PLC networking. It covers the following topics; Concepts, principles, and relationships of automated assembly devices, reviews the different industrial control networks /protocols such as Modbus, CAN, ASI, Profibus and Foundation Fieldbus. Furthermore, the recent technologies in the field of industrial automation will be presented, programmable logic controllers (PLCs), flexible manufacturing systems (FMS), CNC machines, and SCADA systems & typical DCS control systems. The laboratory sessions support the course by providing students with industrial automation experiments for controlling, configuring, and programming industrial systems using PLC and SCADA systems.

IV. Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
- **1-** Demonstrate knowledge and understands of various reasons for employing automation in a manufacturing environment and describe concept of CNC machines and distributed control systems (DCS) and their applications.
- 2- Describe the fundamentals of typical DCS control systems and SCADA Technologies.
- **3-** Design an automated control system to meet desired issues and specifications related to industrial environment.
- **4-** Use a Programmable Logic Controller (PLC) and embedded microcontroller, to perform specified control functions.
- 5- Simulate simple industrial automation functions using SCADA system simulation tool.
- **6-** function effectively while working individually or within project's teams.

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad University of Sana'a **Faculty of Engineering**

Department: Electrical Engineering

V	V. Course Content:						
	A – Theoretical	Aspect:					
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact hours			
1.	Course Orientation and Introduction	 Course orientations, overview on industrial automation, concepts, principles, requirements, goals, equipment and software tools, relationships of automated assembly devices, and applications 	1 st	2			
2.	Principles of Industrial Data Communications and Networking:	 Copper Cable Fiber Optics RS-232 Overview, RS-485 Overview, Current loop and RS-485 Converters Overview, TCP/IP Overview Modbus Overview Fundamentals of DNP3 Fundamentals of IEC 60870-5 Industrial Ethernet Overview AS-interface (AS-i) Overview, DeviceNet Overview, Profibus PA/DP/FMS Overview, Foundation Fieldbus Overview, Modbus Plus Protocol Overview Data Highway Plus/DH485 Overview HART Overview Wireless Technologies 	2 nd ,3 rd	3			
3.	Computer Based Control Systems and Fundamentals	■ Introduction to computer-based measurement and control systems	3 rd , 4 th ,5 th	5			

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Computer Engineering and Control

	of Numerical Control (NC) and CNC Machines:	 Role of computers in measurement and process control. Basic components of computer-based measurement and control systems NC Systems, Principles, Types, NC Controllers, and Components of NC Systems, CNC machine, Principles, Controllers, Programming, and Implementation. 		
4.	Trends of industrial automation technologies:	 An Overview on Direct Digital Control (DDC), Distributed Control System (DCS), PLC Networking, Field Control System (FCS), and SCADA System. 	6 th	2
5.	Sub-systems in an industrial control system:	 Emphasizing on automation point of view considering different modules such as DCS, ESD, F&G, SIS, etc. 	7 th	2
6.	Mid-Term Exam	■ All Previous Topics	8 th	2
7.	An Overview on PLC structures and corresponding languages:	 Processors, Power Supply and Programming Devices. Memory System and I/O Interaction. Digital Input/ Output Systems. Analog Input/ Output Systems Digital Input/ Output Systems Fundamentals of PLC Programming High Security PLC Systems HMI (Human Machine Interface). 	9 th	2
8.	An Overview of Distributed Control Systems (DCS):	 Introduction Basic concepts of Distributed Computing Evolution of Distributed Computing System Present market trends in DCS 	10 th ,11 th	3

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Computer Engineering and Control

		■ General description of a commercial DCS		
		Advantage of DCS systems		
		DCS selection criteria		
		■ DCS architecture		
		■ Programming of DCS systems		
		■ Alarm system management		
		■ Distributed control system (DCS)		
		configuration		
		■ Distributed control system applications.		
		■ Introduction		
	An overview of SCADA systems:	■ Basics of SCADA system		
		■ SCADA key features		
		■ Remote terminal units (RTUs)		
		■ Typical requirements for an RTU system		
9.		■ PLCs used as RTUs	11^{th} , 12^{th}	3
	SCADA systems.	■ Consideration and benefits of SCADA system		
		■ DCS versus SCADA terminology		
		SCADA software package		
		■ Communications for DCS & SCADA		
		systems		
		Honeywell PlantScape system		
	Typical distributed control systems and SCADA systems:	■ Foxboro I/A series distributed control		
		systems		
10.		■ Delta V system	13 th ,14 th	3
10.		■ Citect	13 ,14	J
		■ Wonderware		
		■ Yokogawa		
		■ Simatic PCS 7 (Siemens).		

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Computer Engineering and Control

11.	Design of Industrial Automation Functional Specifications for PLCs, DCSs and SCADA Systems:	 Functional Design Specifications (FDS) Standards and Conventions DCS/PLC/SCADA Data Communication Requirements Graphical User Interface (GUI) Requirements Security Aspects. 		3
12.	Final Exam	■ ALL Topics	16 th	2
Number of Weeks /and Units Per Semester			16	28

B - Practical Aspect:				
Order	Tasks/ Experiments		Contact hours	
1.	Overview on Computer usage: MATLAB, SIMULINK, PLC Networking, LabVIEW (National Instruments), SIMATIC STEP7- Engineering Software (Siemens), SIMATIC WinCC-HMI Software (Siemens) Overview on PLC and Microcontroller Equipment		4	
2.	Overview of CAD/CAM software (Solidworks and MasterCAM): - Installation, Modeling, Requirements and Application - CAD/CAM data exchange - 2D and 3D Machining (milling & turning) - NC file generation in CAD/CAM	3 rd ,4 th ,5 th ,6 th	8	
3.	Exercises in Control and Microcontroller Labs. - Water tank system, - Robotic arm, - Filling and packaging system,		4	
4.	SCADA/HMI system Packages, programming and simulation 9 th ,10 th ,11 th ,12 th		6	

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Typical DCS and SCADA Systems, Honeywell and Foxboro,			
	etc.		
	Development of Simple SCADA System.		
5.	Project Presentation	13 th	2
6.	Review	14 th	2
7.	Final Exam	15 th	2
Number of Weeks /and Units Per Semester			30

VI. Teaching strategies of the course:

- Lectures,
- Assignments,
- Computer-based Laboratory Sessions,
- Practical Lab. Work,
- Reading Materials & Web-sites searches,
- Group Works and Discussions,
- Projects.

VII. Assignments:						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1.	Industrial Networking	a1, a2, b1, c1, d1	3 rd	1		
2.	NC and CNC Machines	a1, a2, b1, c1, d1	4 th to 6 th	3		
3.	Trends in industrial Automation	a1, a2, b1, c1, d1	7^{th}	1		
4.	PLC Structures and Programming	a1, a2, b1, c1, d1	9 th	2		
5.	DCS	a1, a2, b1, c1, d1	10 th & 11 th	2		
6.	SCADA & Typical DCS Systems	a1, a2, b1, c1, d1	12 th & 13 th	3		
7.	Design of Industrial Automated Systems	a1, a2, b1, c1, d1	14 th & 15 th	3		
	Total			15		

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Computer Engineering and Control

VIII. Schedule of Assessment Tasks for Students During the Semester:				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment
1.	Assignments	3 rd to 15 th	15	10%
2.	Laboratory and Computer-based Works	3 rd to 12 th	15	10%
3.	Project Presentation	13 th	15	10%
4.	Mid-Term Exam (Theoretical)	8 th	15	10%
5.	Final Exam (Practical)	15 th	15	10%
6.	Final Exam (Theoretical)	16 th	75	50%
	Total		150	100%

IX. Learning Resources:

- Written in the following order: (Author Year of publication Title Edition Place of publication Publisher).
- 1- Required Textbook(s) (maximum two).
 - 1. J. Love, 2007, Process Automation Hand Book, Springer.
 - 2. Gordon Clarke, 2004, Practical Modern SCADA Protocols.
 - **3.** Groover, M. P. (2008) Automation, Production Systems, and Computer-Integrated Manufacturing, 3rd Ed. Pearson Education. ISBN 0-13-239321-2.
 - 4. IDC Technologies, Practical Distributed Control Systems (DCS), Western Australia.
 - **5.** IDC Technology, (2012)- Design of Industrial Automation Functional Specifications for PLCs, DCSs and SCADA Systems- 1st Edition- West Perth, Western Australia- ISBN: 978-1-922062-01-7

2- Essential References.

- 1. John Park, 2003, Practical Data Acquisition for Instrumentation and Control Systems.
- 2. Steve Mackay, 2004, Practical Industrial Data Networks.
- 3. L. A. Bryan, E. A. Bryan, Programmable Controllers Selected Applications.
- 4. Stuart A. Boyer, ISA, SCADA: Supervisory Control and Data Acquisition.

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Computer Engineering and Control

5. Dale E. Seborg, Duncan A. Mellichamp, Thomas F. Edgar, John Wiley & Sons, Process Dynamics and Control.

3- Electronic Materials and Web Sites etc.

- 1. www.control.com
- 2. www.plcs.net
- 3. www.pacontrol.com
- 4. www.triplc.com
- 5. www.seimens.com
- **6.** http://plc-training-rslogix-simulator.soft32.com/free-download/
- 7. www.plcsimulator.net/
- 8. http://scada.winsite.com
- **9.** http://sourceforge.net/projects/scadabr/files/latest/download?source=directory
- 10. Lecture Prepared by the Lecturer

	X. Course Policies:
	Class Attendance:
1.	A student should attend not less than 75 % of total hours of the subject; otherwise he will not be
	able to take the exam and will be considered as exam failure. If the student is absent due to
	illness, he/she should bring a proof statement from university Clinic
	Tardy:
2.	For late in attending the class, the student will be initially notified. If he repeated lateness in
	attending class he will be considered as absent.
	Exam Attendance/Punctuality:
3.	A student should attend the exam on time. He is Permitted to attend an exam half one hour from
3.	exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam-
	Assignments & Projects:
4.	The assignment is given to the students after each chapter; the student has to submit all the
	assignments for checking on time-

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Computer Engineering and Control

	Cheating:
5.	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty-
	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student. If the
6.	examination committee proofed a plagiarism of a student, he will be disengaged from the Faculty.
	The final disengagement of the student from the Faculty should be confirmed from the Student
	Council Affair of the university.
	Other policies:
7.	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the
	student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Prepared by Assoc. Prof. Dr. Farouk AL-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad