

Course Specification of Smart Antenna Systems

I. Course Identification and General Information:						
1.	Course Title:	Smart Ant	enna Syster	ns		
2.	Course Code &Number:	CNE334				
		C.H Credit			Credit	
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Hours
		2	2	-	-	3
4.	Study level/ semester at which this course is offered:	4 th Level/ 2 nd semester				
5.	Pre –requisite (if any):	None.				
6.	Co –requisite (if any):	Waves Propagation and Antennas (CNE322)				
7.	Program (s) in which the course is offered:	Communication Engineering and Networks			rks	
8.	Language of teaching the course:	English+ Arabic				
9.	Location of teaching the course:	Faculty of Engineering, Sana'a University				
10.	Prepared By:	Tr. Abdulbaset Al-Bshah				
11.	Date of Approval:	2020	2020			

II. Course Description:

This course aims to provide students with an understanding of the design, configuration and architecture of smart antennas systems, with the study of the Classical Beam former and adaptive algorithms for beamforming (LMS, RLS). It includes the approach and methods to estimate the Direction of Arrival (DOA). The course gives comprehensive study of Space—Time channel and signal models and Space—Time beamforming.

Prepared by Tr. Abdulbaset Al-Bshah Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III	III. Course Intended learning outcomes (CILOs) of the		
	course	PILOs	
a1	Illustrate key benefits and drawbacks for both the basic antennas and smart antenna technology.	A1	
a2	Explain the principles of configuration and architecture differences between smart and basic antennas.	A2	
b1	Identify the Approach and Methods to estimate the Direction of Arrival (DOA) and Maximum SNR/ SINR Beam former.	B1	
b2	Analyze the Discrete Space–Time processing and adaptive algorithms for Beamforming (LMS, RLS).	В3	
c1	Perform the requirements for the design and implementation of smart antenna systems.	C2	
c2	Analyze of Multiple Input - Multiple Output (MIMO) Communications Systems (frequency selective scenarios, capacity and data Rates)	C3	
d1	Perform specific tasks individually and present his tasks' ideas clearly.	D2	
d2	Conduct scientific research and drafting reports for it.	D5	

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
a1: Illustrate key benefits and drawbacks for both the basic antennas and smart antenna technology.	 Lectures. Dialogue and discussion. Brainstorming. Research assignments. Self-learning. 	 Final & Midterm exams. Quizzes & Oral discussion. Assignments evaluation. 		

Prepared by
Tr. Abdulbaset
Al-Bshah

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: B.Sc. of Communication Engineering and Networks

a2:	Explain the design, Configuration				
	and Architecture diff		differences		
	between smart and basic antenr				

- Lectures.
- Dialogue and discussion.
- Brainstorming.
- Research assignments.
- Final & Midterm exams.
- Quizzes & Oral discussion.
- Assignments evaluation.

(B)	(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching					
Strat	tegies and Assessment Strategies	:				
Cou	rse Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
b1:	Identify the Approach and Methods to estimate the Direction of Arrival (DOA) and Maximum SNR/ SINR Beam former.	 Lectures. Dialogue and discussion. Brainstorming. Research assignments. Self-learning. 	Final & Midterm exams.Quizzes & Oral discussion.Assignments evaluation.			
b2:	Analyze the Discrete Space— Time processing and adaptive algorithms for Beamforming (LMS, RLS).	 Lectures. Dialogue and discussion. Brainstorming. Research assignments. 	Final & Midterm exams.Quizzes & Oral discussion.Assignments evaluation.			

C Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Course Intended Learning Outcomes Teaching strategies Assessment Strategies				
c1: Perform the requirements for the design and implementation of smart antenna systems.	 Lectures. Dialogue and discussion. Brainstorming. Research assignments. Self-learning. 	 Final & Midterm exams. Quizzes & Oral discussion. Assignments evaluation. 			

Prepared by
Tr. Abdulbaset
Al-Bshah

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: B.Sc. of Communication Engineering and Networks

c2:	Analyze of Multiple Input - Multiple Output (MIMO) Communications Systems (frequency selective scenarios, Capacity and Data Rates).	 Lectures. Dialogue and discussion. Brainstorming. Research assignments. Self-learning. 	 Final & Midterm exams. Quizzes & Oral discussion. Assignments evaluation.
-----	---	--	---

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:				
Cou	rse Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
d1:	Perform specific tasks individually and present his tasks' ideas clearly.	BrainstormingResearch assignments.	 Assignments evaluation. 	
d2:	Conduct scientific research and drafting reports for it.	Dialogue and discussionBrainstormingResearch assignments.	 Assignments evaluation. 	

IV.	IV. Course Content:						
	A – Theoretical A	spect:					
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours		
1.	Antenna Arrays Overview	a1, a2,d1, d2	Isotropic RadiatorsOmnidirectional AntennasDirectional AntennasPhased Array Antennas	2	4		

Prepared by	Head of Department	Quality Assurance Unit	Dean of the Faculty
Tr. Abdulbaset	Asst. Prof. Dr. Adel	Assoc. Prof. Dr.	Prof. Dr. Mohamme
Al-Bshah	Ahmed Al-Shakiri	Mohammad Algorafi	AL-Bukhaiti

Academic Development lty Center & Quality Assurance ned Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: B.Sc. of Communication Engineering and Networks

			Adaptive ArraysDiversity Techniques		
2.	Smart Antennas for Wireless Communications	a1,a2,c1,c2,d1,d2	- Need for Smart Antennas Smart Antenna Configurations (Switched-Beam, Adaptive Antenna Approach) Space Division Multiple Access (SDMA) Architecture of a Smart Antenna System (Receiver, Transmitter) Benefits and Drawbacks Basic Principles Mutual Coupling Effects Multiple Input - Multiple Output (MIMO) Communications Systems, MIMO for frequency selective scenarios.	3	6
3.	DOA Estimation Fundamentals	l alaybleldy l		2	4

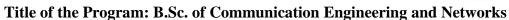
Prepared by Tr. Abdulbaset Al-Bshah Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: B.Sc. of Communication Engineering and Networks

			Algorithm, ESPRIT Algorithm) Uniqueness of DOA Estimates.		
4.	Beam Forming Fundamentals	a1,a2,b1,b2,c1,d2	 Classical Beam former. Statistically Optimum Beamforming weight vectors. Maximum SNR Beam former. Multiple Side-lobe Canceller and maximum SINR Beam former. Minimum Mean Square Error (MMSE). Direct Matrix Inversion (DMI). Linearly Constrained Minimum Variance (LCMV). Adaptive Algorithms for Beamforming (LMS, RLS) 	4	8
5.	Space—Time Processing	a1,b2,c1,c2,d2	 - Discrete Space—Time Channel and Signal Models. - Space—Time Beamforming. - Intersymbol and Co-Channel Suppression. - Space—Time Processing for DS-CDMA. 	3	6

Prepared by Tr. Abdulbaset Al-Bshah Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: B.Sc. of Communication Engineering and Networks


			- Capacity and Data Rates in MIMO Systems.		
Numbe	er of Weeks /and U	nits Per Semester		14	28

B- Tutorials Aspect:							
Order	Tutorial Skills List	Nº of Weeks	С.Н.	CILOs			
1.	Antenna Arrays Overview	2	4	a1, a2, d1, d2			
2.	 Smart Antennas for Wireless Communications Need for Smart Antennas. Smart Antenna Configurations (Switched-Beam, Adaptive Antenna Approach) Space Division Multiple Access (SDMA). Architecture of a Smart Antenna System (Receiver, Transmitter.(Benefits and Drawbacks . Basic Principles. Mutual Coupling Effects. Multiple Input - Multiple Output (MIMO) Communications Systems, MIMO for frequency selective scenarios. 	3	6	a1, a2, c1, c2, d1, d2			

Prepared by
Tr. Abdulbaset
Al-Bshah

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

3.	 DOA Estimation Fundamentals Array Response Vector. Received Signal Model. Subspace-Based Data Model. Signal Autocovariance. Conventional DOA Estimation Methods. Subspace Approach to DOA Estimation 	3	6	a1, a2, b1, c1, d2
	(MUSIC Algorithm, ESPRIT Algorithm).Uniqueness of DOA Estimates.Beam Forming Fundamentals			
4.	 Classical Beam former. Statistically Optimum Beamforming weight vectors. Maximum SNR Beam former. Multiple Side-lobe Canceller and maximum SINR Beam former. Minimum Mean Square Error (MMSE). Direct Matrix Inversion (DMI). Linearly Constrained Minimum Variance (LCMV) Adaptive Algorithms for Beamforming (LMS, RLS) 	3	6	a1, a2, b1, b2,c1, d2
5.	Space—Time Processing • Discrete Space—Time Channel and Signal Models.		6	a1, b2, c1, c2, d2
]	Number of Weeks /and Units Per Semester	14	28	

Prepared by Tr. Abdulbaset Al-Bshah Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V. Teaching strategies of the course:

Title of the Program: B.Sc. of Communication Engineering and Networks

- Lectures
- Assignments.
- Dialogue and discussion.
- Brainstorming.
- Self-learning.

VI	VI. Assignments:								
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark					
1.	Phased array antennas, adaptive arrays and diversity techniques.	a1, a2, d1, d2	2 nd	1.5					
2.	Smart antenna configurations and architecture.	a1, a2, c1, c2, d1, d2	4 th	2.25					
3.	Multiple Input - Multiple Output (MIMO) Communications Systems for frequency selective scenarios	a1, a2, c1, c2, d1, d2	6 th	3					
4.	Approach and Methods to Estimate the Direction of Arrival (DOA).	a1, a2, b1, c1, d1, d2	9 th	3					
5.	Classical/ Space—Time Beam former methods and adaptive algorithms for beamforming (LMS, RLS).	a1, a2, b1, b2, c1, d2	11 th	3					
6.	Space—Time channel and signal models and Space—Time processing for DS-CDMA.	a2, b2, c1, c2, d2	13 th	2.25					
	Total			15					

Prepared by
Tr. Abdulbaset
Al-Bshah

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

\mathbf{V}]	VII. Schedule of Assessment Tasks for Students During the Semester:									
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes					
1.	Assignments	2 nd ,4t ^h , 6 th ,9th, 11 th ,13 th	15	10%	a1, a2, b1, b2, c1, c2. d1, d2					
2.	Quiz 1&2	4 th , 10 th	7.5	5%	a1, a2, b1, b2					
3.	Midterm Exam	8 th	22.5	15%	a1, a2, b1, b2, c1, c2. d1, d2					
4.	Final Exam	16 th	105	70%	a1, a2, b1, b2, c1, c2. d1, d2					
	Sum		150	100%						

VIII. Learning Resources:

- 1- Required Textbook(s) (maximum two).
 - 1. Introduction to Smart Antennas, C.A.Balanis, Morgan and Claypool, 2007
 - 2. Smart Antennas, L.C.Godra, CRC Press, 2004

2- Essential References.

- 1. Smart Antenna for Wireless Communication, T.S.Rappaport and J.C.Liberti, Prentice Hall, 1999
- 2. Adaptive Filter Theory, S. Haykin. Prentice Hall, 1985
- 3. Smart Antenna Engineering, Ahmed El Zooghby, Artech House, 2005.

3- Electronic Materials and Web Sites etc.

- 1. http://www.wiley.com/go/permissions.
- 2. http://www.cst.com
- 3. http://he-cda.wiley.com/wileycda/
- 4. www.mm-microwave.com

Prepared by Tr. Abdulbaset Al-Bshah Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

IX	X.Course Policies:
1.	Class Attendance: - The students should have more than 75% of attendance according to rules and regulations of the faculty.
2.	Tardy: - The students should respect the timing of attending the lectures. They should attend within 15 minutes from starting of the lecture.
3.	Exam Attendance/Punctuality: - The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam.
4.	Assignments & Projects: - The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time.
5.	Cheating: - If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquires.
6.	Plagiarism: - If one student attends the exam on another behalf; he will be dismissed from the faculty according to the policy, rules and regulations of the university.
7.	Other policies: - All the teaching materials should be kept out the examination hall and mobile phones are not allowed. - Mutual respect should be maintained between the student and his teacher and also among students. Failing in keeping this respect is subject to the policy, rules and regulations of the university.

Prepared by Tr. Abdulbaset Al-Bshah Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: B.Sc. of Communication Engineering and Networks

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek					
By	A. Barakat					
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi					
	Name of Reviewer from the Department: Asst. Prof. Dr. Mohammed Al-Suraby					
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa					
	Assoc. Prof. Dr. Ahmed Mujahed					
	Asst. Prof. Dr. Munasar Alsubri					

Prepared by Tr. Abdulbaset Al-Bshah Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Template for Course Plan of Smart Antenna Systems

I Information about Faculty Member Responsible for the Course:								
Name of Faculty Member	THE CHAIRS				s			
Location &Telephone No.	Elephone Engineering Faculty SAT SUN			MON	TUE	WED	THU	
E-mail	drmurad00@yahoo.com			8 - 12				

II.	II. Course Identification and General Information:					
1.	Course Title:	Smart A	Smart Antenna Systems			
2.	Course Number & Code:	CNE334	CNE334			
		C.H Credit			Credit	
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Hours
		2	2	-	-	3
4.	Study level/year at which this course is offered:	4 th Level/ 1 st semester				
5.	Pre –requisite (if any):	Waves Propagation and Antennas (CNE322)			IE322)	
6.	Co –requisite (if any):	None.				
7.	Program (s) in which the course is offered	Communication Engineering and Networks			vorks	
8.	Language of teaching the course:	English+ Arabic				
9.	System of Study:	Regular				
10.	Mode of delivery:	Lecture				
11.	Location of teaching the course:	Faculty of Engineering – Sana'a University				

Prepared by Tr. Abdulbaset Al-Bshah Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III. Course Description:

This course aims to provide students with an understanding of the design, configuration and architecture of smart antennas systems, with the study of the Classical Beam former and adaptive algorithms for beamforming (LMS, RLS). It includes the approach and methods to estimate the Direction of Arrival (DOA). The course gives comprehensive study of Space—Time channel and signal models and Space—Time beamforming.

IV. Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
 - 1. Illustrate key benefits and drawbacks for both the basic antennas and smart antenna technology.
 - **2.** Explain the principles of configuration and architecture differences between smart and basic antennas.
 - **3.** Identify the Approach and Methods to estimate the Direction of Arrival (DOA) and Maximum SNR/ SINR Beam former.
 - **4.** Analyze the Discrete Space—Time processing and adaptive algorithms for Beamforming (LMS, RLS).
 - **5.** Perform the requirements for the design and implementation of smart antenna systems.
 - **6.** Analyze of Multiple Input Multiple Output (MIMO) Communications Systems (frequency selective scenarios, capacity and data Rates)
 - 7. Perform specific tasks individually and present his tasks' ideas clearly.
 - **8.** Conduct scientific research and drafting reports for it.

Prepared by Tr. Abdulbaset Al-Bshah Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V	V. Course Content:				
	A – Theoretical Aspect:				
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact hours	
1.	Antenna Arrays Overview	 Isotropic Radiators Omnidirectional Antennas Directional Antennas Phased Array Antennas Adaptive Arrays Diversity Techniques 	1 st ,2 nd	4	
2.	Smart Antennas for Wireless Communications	- Need for Smart Antennas Smart Antenna Configurations (Switched-Beam, Adaptive Antenna Approach) Space Division Multiple Access (SDMA) Architecture of a Smart Antenna System (Receiver, Transmitter) Repetits and Drawbacks		6	
3.	DOA Estimation Fundamentals	 - Array Response Vector. - Received Signal Model. - Subspace-Based Data Model. - Signal Autocovariance. - Conventional DOA Estimation Methods. 	6 th , 7 th	4	

Prepared by Tr. Abdulbaset Al-Bshah Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: B.Sc. of Communication Engineering and Networks

		- Subspace Approach to DOA Estimation		
		(MUSIC Algorithm, ESPRIT Algorithm).		
		- Uniqueness of DOA Estimates.		
4.	Midterm Exam	All previous topics	8 th	2
5.	Beam Forming Fundamentals	 Classical Beam former. Statistically Optimum Beamforming weight vectors. Maximum SNR Beam former. Multiple Side-lobe Canceller and maximum SINR Beam former. Minimum Mean Square Error (MMSE). Direct Matrix Inversion (DMI). Linearly Constrained Minimum Variance (LCMV). Adaptive Algorithms for Beamforming (LMS, RLS) 	9 th , 10 th ,11 th ,12 th	8
6.	Space–Time Processing	 - Discrete Space–Time Channel and Signal Models. - Space–Time Beamforming. - Intersymbol and Co-Channel Suppression. - Space–Time Processing for DS-CDMA. - Capacity and Data Rates in MIMO Systems. 	13 th ,14 th , 15 th	6
7.	Final Exam	All topics	16 th	2
Numbe	Number of Weeks /and Units Per Semester 16			32

Prepared by Tr. Abdulbaset Al-Bshah Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

В. '	B. Tutorials Aspect:				
Order	Tutorial Skills List	Nº of Weeks	С.Н.		
6.	Antenna Arrays Overview Isotropic Radiators Omnidirectional Antennas Directional Antennas Phased Array Antennas Adaptive Arrays Diversity Techniques	1 st ,2 nd	4		
7.	Smart Antennas for Wireless Communications Need for Smart Antennas. Smart Antenna Configurations (Switched-Beam, Adaptive Antenna Approach) Space Division Multiple Access (SDMA). Architecture of a Smart Antenna System (Receiver		6		
8.	Systems, MIMO for frequency selective scenarios. DOA Estimation Fundamentals Array Response Vector. Received Signal Model. Subspace-Based Data Model. Signal Autocovariance. Conventional DOA Estimation Methods. Subspace Approach to DOA Estimation (MUSIC Algorithm, ESPRIT Algorithm).	6 th .7 th ,8 th	6		

Prepared by Tr. Abdulbaset Al-Bshah Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: B.Sc. of Communication Engineering and Networks

	Uniqueness of DOA Estimates.		
	Beam Forming Fundamentals		
	Classical Beam former.		
	 Statistically Optimum Beamforming weight vectors. 		
	 Maximum SNR Beam former. 		
9.	 Multiple Side-lobe Canceller and maximum SINR Beam 	9 th ,10 th	6
9.	former.	,11 th	U
	 Minimum Mean Square Error (MMSE). 		
	 Direct Matrix Inversion (DMI) . 		
	 Linearly Constrained Minimum Variance (LCMV) 		
	 Adaptive Algorithms for Beamforming (LMS, RLS) 		
	Space–Time Processing		
	 Discrete Space—Time Channel and Signal Models. 		
10.	 Space–Time Beamforming. 	12 th	6
10.	 Intersymbol and Co-Channel Suppression. 	,13 ^{th.} ,14 th	U
	 Space–Time Processing for DS-CDMA. 		
	 Capacity and Data Rates in MIMO Systems. 		
	Number of Weeks /and Units Per Semester	14	28

VI. Teaching strategies of the course:

- Lectures
- Assignments.
- Dialogue and discussion.
- Brainstorming.
- Self-learning.

Prepared by
Tr. Abdulbaset
Al-Bshah

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V	II. Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	Phased array antennas, adaptive arrays and diversity techniques.	a1, a2, d1, d2	2 nd	1.5
2.	Smart antenna configurations and architecture.	a1, a2, c1, c2, d1, d2	4 th	2.25
3.	Multiple Input - Multiple Output (MIMO) Communications Systems for frequency selective scenarios	a1, a2, c1, c2, d1, d2	6 th	3
4.	Approach and Methods to Estimate the Direction of Arrival (DOA).	a1, a2, b1, c1, d1, d2	9 th	3
5.	Classical/ Space-Time Beam former methods and adaptive algorithms for beamforming (LMS, RLS).	a1, a2, b1, b2, c1, d2	11 th	3
6.	Space–Time channel and signal models and Space–Time processing for DS-CDMA.	a2, b2, c1, c2, d2	13 th	2.25
	Total			15

VII	VIII.Schedule of Assessment Tasks for Students During the Semester:				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	
1.	Assignments	2 nd ,4 th ,6 th ,9th ,11 th ,13 th	15	10%	
2.	Quiz 1&2	4 th , 10 th	7.5	5%	
3.	Midterm Exam	8 th	22.5	15%	
4.	Final Exam	16 th	105	70%	
	Sum		150	100%	

Prepared by Tr. Abdulbaset Al-Bshah Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

IX. Learning Resources:

1- Required Textbook(s) (maximum two).

- 1. Introduction to Smart Antennas, C.A.Balanis, Morgan and Claypool, 2007
- 2. Smart Antennas, L.C.Godra, CRC Press, 2004

2- Essential References.

- 1. Smart Antenna for Wireless Communication, T.S.Rappaport and J.C.Liberti, Prentice Hall, 1999
- 2. Adaptive Filter Theory, S. Haykin. Prentice Hall, 1985
- 3. Smart Antenna Engineering, Ahmed El Zooghby, Artech House, 2005.

3- Electronic Materials and Web Sites etc.

- 1. http://www.wiley.com/go/permissions.
- 2. http://www.cst.com
- 3. http://he-cda.wiley.com/wileycda/
- 4. www.mm-microwave.com

	X. Course Policies:
1.	Class Attendance: - The students should have more than 75% of attendance according to rules and regulations of the faculty.
2.	Tardy: - The students should respect the timing of attending the lectures. They should attend within 15 minutes from starting of the lecture.
3.	Exam Attendance/Punctuality: - The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam.
4.	Assignments & Projects: - The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time.

Prepared by
Tr. Abdulbaset
Al-Bshah

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: B.Sc. of Communication Engineering and Networks

5.	Cheating: - If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquires.
6.	Plagiarism: - If one student attends the exam on another behalf; he will be dismissed from the faculty according to the policy, rules and regulations of the university.
7.	Other policies: - All the teaching materials should be kept out the examination hall and mobile phones are not allowed. - Mutual respect should be maintained between the student and his teacher and also among students. Failing in keeping this respect is subject to the policy, rules and regulations of the university.

Prepared by Tr. Abdulbaset Al-Bshah Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad