

Course Specification of Industrial Statistics and Quality Control

I.Course Identification and General Information:						
1.	Course Title:	Industr	ial Statistics	and Qu	ality Cor	ntrol.
2.	Course Code & Number:	MT303	3.			
			С.Н.			TOTAL
3.	Credit hours:	Th.	Seminar	Pr.	Tu.	Cr. Hrs.
		2	-	-	2	3
4.	Study Level/ Semester at which this Course is offered:	Fourth Year- First Semester.				
5.	Pre –Requisite (if any):	Applie	d Engineerin	g Mathe	ematics.	
6.	Co –Requisite (if any):	None.				
7.	Program (s) in which the Course is offered:	Mechatronics Engineering Program.				
8.	Language of Teaching the Course:	English Language.				
9.	Location of Teaching the Course:	Mechatronics Engineering Department.				
10.	Prepared by:	Dr. Abdulsalam Almekhlafy				
11.	Date of Approval:					

II.Course Description:

Statistics and Quality Control is the science that uses the collected data from the manufacturing products and employs statistical analysis to monitor the quality standard of the products. The students will learn: types of products' data, analysis of process and plant data using statistical methods, statistical quality control, statistical process control, acceptance sampling, six sigma and

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

related topics. Besides, students will learn how to realize customer's quality needs and implement monitoring and statistical methods to improve control.

III.Cou	rse Intended learning outcomes (CILOs) of the rse	Referenced PILOs
a.1	Explain variation in a process or data, using frequency distribution, histogram, stem-and-leaf plot, box plot, and normal probability plot.	A1
a.2	Describe process defects using Binomial, Poisson, Normal, and Exponential distribution functions.	A2
b.1	Construct a frequency distribution, histogram, stem-and-leaf plot, box plot, and normal probability of data readings of a process.	B1
b.2	Formulate solutions to real industrial applications using 6 sigma, JIT, and Lean manufacturing concepts.	В3
c.1	Calculate process capability ratios (Cp, Cpk, and Cpkm) using appropriate computer tools.	C2
c.2	Implement control charts for variables data (x-bar and R charts) and attribute data (p, np, c, and u charts) using EXCEL, SPSS, and Minitab software.	C5
d.1	Judge effectively both orally and in written forms for topics related to statistics and quality control.	D2
d.2	Defend acquisition of new knowledge as a part of life- long learning strategy.	D5
d.3	Review technical reports of the statistical results of data obtained.	D6

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
a.1 Explain variation in a process or data, using frequency distribution, histogram, stem-and-leaf plot, box plot, and normal probability plots.	Active LecturesTutorials	 Written Assessment. Short Essays.		
a.2 Describe process defects using Binomial, Poisson, Normal, and Exponential distribution functions.	Active Lectures.Tutorials.Case Studies	Written Assessment.Practical Assessment.		

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
b.1 Construct a frequency distribution, histogram, stem-and-leaf plot, box plot, and normal probability of data readings of a process.	 Group Learning and Problem-Based Learning Independent Applications of Engineering Analysis. Case Studies 	 Practical Assessment. Project Reports. Laboratory Reports.			
b.2 Formulate solutions to real industrial applications using 6 sigma, JIT, and Lean manufacturing concepts.	 Group Learning and Problem-Based Learning Hands-on Laboratory Work. Case Studies. 	Written Assessment.Project Reports.Case Studies.			

Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
c.1 Calculate process capability ratios (Cp, Cpk, and Cpkm) using appropriate computer tools.	Hands-on Laboratory workDesign Work and Projects	 Practical Assessment. Laboratory Reports.			
c.2 Implement control charts for variables data (x-bar and R charts) and attribute data (p, np, c, and u charts) using EXCEL, SPSS, and Minitab software.	 The Use of Communication and Information Technology. Computer and Web-Based Learning. 	Simulations.Laboratory Reports.			

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
d.1 Judge effectively both orally and in written forms for topics related to statistics and quality control.	 Hands-on Laboratory Work. Group Learning.	 Project Reports. Presentations.			
d.2 Defend acquisition of new knowledge as a part of life- long learning strategy.	 The Use of Communication and Information Technology Directed Self-Study 	 Project Reports. Laboratory Reports. Presentations.			
d.3 Review technical reports of the statistical results of data obtained.	Design Work and Projects.	• Laboratory Reports Presentations.			

Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

IV. Course Content:

A - Theoretical Aspect:

Order	Units/Topics List	Learning	Sub Topics List	Number	Contact
Order	Omts/Topics List	Outcomes	Sub Topics List	of Weeks	Hours
1.	Introduction to Quality, Quality Control and Improvement.	a1, a2	 Meaning of Quality, Quality Control and Quality Improvement Brief History of Quality Control and Improvement Statistical Methods of Quality Control and Improvement Other Aspects of Quality 	1	2
2.	Modeling Process Quality.	a1, a2	 Describing Variation Important Discrete Distributions Important Continuous Distributions 	1	2
3.	Inferences about Process Quality.	a1, a2	 Statistics and Sampling Distributions Point Estimation of Process Parameters Statistical Inference for Two Samples Statistical Inference for more than Two Populations 	2	4

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

4.	Methods and Philosophy of Statistical Process Control.	a1, a2	 Introduction to statistical process control Chance and Assignable Causes of Quality Statistical Basis of the Control Chart The Rest of the "Magnificent Seven" Implementing SPC An Application of SPC 	2	4
5.	Control Charts for Variables.	a2, b1, b2, c2	 Introduction Control Charts for x and R Control Charts for x and S The Shewhart Control Chart for Individual Measurements Summary of Procedures for x, R, and S Charts Applications of Variables Control Charts 	1	2
6.	Mid Term Exam.	a1, a2, b1, b2, c1,c2.	• The first 5 chapters.	1	2
7.	Control Charts for Attributes.	a2, b1, b2, c2	IntroductionControl Charts for Fraction Nonconforming	1	2

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

			 Control Charts for Nonconformities (Defects) Choice between Attributes and Variables Control Charts Guidelines for Implementing Control Charts 		
8.	Process and Measurement System Capability Analysis.	b2, c1, c2	 Introduction Process Capability Analysis Using a Histogram or a Probability Plot Process Capability Ratios Process Capability Analysis Using a Control Chart Process Capability Analysis Using Designed Experiments Gage and Measurement System Capability Studies Setting specification Limits on Discrete Components 	2	4
9.	Acceptance Sampling.	a1, a2	Lot-by-Lot Acceptance Sampling for Attributes	2	4

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

12.	Final Exam.	a1, a2, b1, b2, c1,c2.	All the chapters. See Per Semester	1	2 32
11.	Lean Production and Quality.	a1, a2, b2	 The Birth of Lean Production The Lean Production System Stability Just-In-Time 	1	2
10.	Six Sigma.	b2	 DMAIC Application of Six Sigma tools to minimize production variability Taguchi Loss Function 	1	2
			 Acceptance Sampling Problem Single-Sampling Plans for Attributes Double, Multiple, and Sequential Sampling Military Standard 105E (ANSI/ASQC Z1.4, ISO 2859) 		

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

B - Tutorial Aspect:						
Order	Tasks/ Experiments	Number of Weeks	Contact Hours	Learning Outcomes		
1.	 Statistical Methods of Q. C. and Improvement Important Discrete Distributions Important Continuous Distributions 	2	4	a1, a2		
2.	 Statistics and Sampling Distributions Point Estimation of Process Parameters Statistical Inference for Two Samples Statistical Inference for more than two populations 	2	4	a1, a2, b1		
3.	 Statistical process control Chance and assignable causes of quality Statistical basis of the control chart, The rest of the "Magnificent Seven" Implementing SPC, An Application of SPC 	2	4	a1, a2, b1, b2		
4.	 Control Charts of Variables Control Charts for x and R Control Charts for x and S The Shewhart Control Chart for Individual Measurement. 	1	2	a2, b1, b2		
5.	Applications of variables control chartsControl Charts for attributes	1	2	a2, b1, b2, c2		
6.	 Control charts for fraction Nonconforming Control charts for nonconformities (defects) 	1	2	a2, b1, b2, c2		

Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

	Choice between attributes and variables control charts			
7.	 Process and measurement system capability analysis Process capability (Cp) analysis using a histogram or a probability plot Process capability ratios Cp analysis using a control chart 	2	4	a2, b1, b2, c1, c2
8.	 Cp analysis using designed experiments Gage and measurement system capability studies Setting specification limits on discrete components Estimating the natural tolerances limits of a process Acceptance Sampling problem 	1	2	a2, b2, c1, c2
9.	 Single-Sampling Plans for Attributes Double, Multiple, and Sequential Sampling Military Standard 105E (ANSI/ASQC Z1.4, ISO 2859) DMAIC Application of Six Sigma Tools to minimize variability Design of Experiment 	1	2	a1, a2, b2
10.	Lean Production SystemStabilityJust-In-Time	1	2	a1, a2, b2
	Number of Weeks /and Units Per Semester	14	28	

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

V.Teaching Strategies of the Course:

The teaching strategies of the course are as follows:

- Active Lectures (supported with discussions).
- Tutorials.
- Hands-on Laboratory Work.
- Independent Learning and Work.
- Group Learning and Problem-Based Learning.
- Independent Applications of Engineering Analysis.
- Computer and Web-Based Learning.
- Case Studies.
- The Use of Communication and Information Technology.
- Design Work and Projects.
- Directed Self-Study.

VI. Assessment Methods of the Course:

The assessment methods of the course are as follows:

- Short essays.
- Written Assessments.
- Simulations.
- Practical Assessment.
- Project Reports.
- Laboratory Reports.
- Case Studies.
- Presentations.

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

VII. Assignments:							
Order	Assignments	Aligned CILOs (symbols)	Week Due	Mark			
1.	Use computer software for solving home-works. H.W.1. Determine the mean mode, maiden, range, standard deviation of 50 pieces of measured data. Construct histograms and Stem-and-Leaf Plot	a1, a2, b1, c1, d1, d3	3 rd	6			
2.	H.W.2. Construct probabilities distribution models and normal distribution models.	a1, a2, b1, c1, d1, d2, d3	5 th	6			
3.	H.W.3. Construct control charts.	a1, a2, c2, d1, d3	7^{th}	6			
4.	H.W.4. Construct variable control charts.	a1, a2, c2, d1, d3	9 th	6			
5.	H.W.5. Construct attribute control charts.	a1, a2, c2, d1, d3	12 th	6			
	Total			30			

VIII.Schedule of Assessment Tasks for Students During the Semester:							
Order	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes		
1.	Assignments and Home-Works.	3, 5, 7, 9, 12	30	20%	a1, a2, b1, c1, c2, d1, d2, d3		
2.	Quizzes.	6, 11	15	10%	a1, a2, b1, b2, c1, c2		
3.	Mid-Term Exam.	8	15	10%	a1, a2, b1, b2		

Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

4.	Final Exam.	16	90	60%	a1, a2, b1, b2
Total			150	100%	

IX. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1. Montgomery, Douglas C., 2009, Introduction to Statistical Quality Control, 6th Ed., N.Y., John Wiley and Sons.
- 2. Amitava Mitra, 2008, Fundamentals of quality control and improvement, 3rd Ed., N.Y., John Wiley and Sons.

2- Essential References.

- 1. Vardeman, Strphen B, Jobe, J Marcus, 2016, Statistical method for quality assurance, N.Y., Springer Verlag.
- 2. William Navidi, 2011, Statistics for Engineers and Scientists, 3rd Ed., N.Y., McGraw-Hill.
- 3. George, M. L., 2002, Lean Six Sigma, N.Y., McGraw-Hill.

3- Electronic Materials and Web Sites etc.

- 1. A Guide to Simulation in MINITAB https://web.ma.utexas.edu/users/mks/358Ksp06/minitabsim.html
- 2. Journal of Quality Technology Taylor & Francis https://www.tandfonline.com/loi/ujqt20
- 3. Industrial Quality Control, Journal of the American Society for Quality Control

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

http://www.speciation.net/Database/Journals/Industrial-Quality-Control-;i1161

- 4. MIT OpenCourseWare, Probability And Its Applications To Reliability, Quality Control, And Risk Assessment
 - https://ocw.mit.edu/courses/nuclear-engineering/22-38-probability-and-its-applications-to-reliability-quality-control-and-risk-assessment-fall-2005/
- 5. The National Programme on Technology Enhanced Learning (NPTEL), Six Sigma https://nptel.ac.in/courses/110/105/110105039/#

X	Course Policies:
1.	Class Attendance: The students should have more than 75 % of attendance according to rules and regulations of the Faculty.
2.	Tardy: The students should respect the timing of attending the lectures. They should attend within 10 minutes from starting of the lecture.
3.	Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam.
4.	Assignments & Projects:

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

	The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.
5.	Cheating: If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquires.
6.	Plagiarism: The student will be terminated from the Faculty, if one student attend the exam on another behalf according to the policy, rules and regulations of the university.
7.	 Other policies: All the teaching materials should be kept out the examination hall. The mobile phone is not allowed. There should be a respect between the student and his teacher.

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Dr. Tarek A. Barakat
Ву	President of Quality Assurance Unit: Ass. Prof. Dr. Mohammed Algorafi
	Head of Mechatronics Engineering Department: Ass. Prof. Dr. Abdul-Malik Momin
	Dr. Hatem Al-Dois
	Deputy Rector for Academic Affairs Dr. Ibrahim AlMutaa
	Ass. Prof. Dr. Ahmed Mujahed
	Dr. Munaser Alsubri

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Course Plan of Industrial Statistics and Quality Control

I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Dr. Abdulsalam Almekhlafy	Dr. Abdulsalam Almekhlafy Office Hours					
Location& Telephone No.	00967-771292117	SA T	SU N	MO N	TU E	WE D	TH U
E-mail	drabdulsalam2@gmail.com						

II. Course Identification and General Information:							
1.	Course Title:	Industrial Statistics and Quality Control.					
2.	Course Code & Number:	MT303.					
			C.H.	•		ТОТАІ	
3.	Credit hours:	Th.	Seminar	Pr.	Tu.	TOTAL	
		2	-	-	2	3	
4.	Study Level/ Semester at which this Course is offered:	Fourth Year- First Semester					
5.	Pre –Requisite (if any):	Applied Engineering Mathematics.					
6.	Co –Requisite (if any):	None.					
7.	Program (s) in which the Course is offered:	Mechatronics Engineering Program.					
8.	Language of Teaching the Course:	English Language.					
9.	System of Study:	Semesters.					
10.	Mode of Delivery:	Lectures and Tutorials.					
11.	Location of Teaching the Course:	Mechatronics Engineering Department.					

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

III. Course Description:

Statistics and Quality Control is the science that uses the collected data from the manufacturing products and employs statistical analysis to monitor the quality standard of the products. The students will learn: types of products' data, analysis of process and plant data using statistical methods, statistical quality control, statistical process control, acceptance sampling, six sigma and related topics. Besides, students will learn how to realize customer's quality needs and implement monitoring and statistical methods to improve control.

IV.	Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a.1	Explain variation in a process or data, using frequency distribution, histogram, stem-and-leaf plot, box plot, and normal probability plot.	A1
a.2	Describe process defects using Binomial, Poisson, Normal, and Exponential distribution functions.	A2
b.1	Construct a frequency distribution, histogram, stem-and-leaf plot, box plot, and normal probability of data readings of a process.	B1
b.2	Formulate solutions to real industrial applications using 6 sigma, JIT, and Lean manufacturing concepts.	В3
c.1	Calculate process capability ratios (Cp, Cpk, and Cpkm) using appropriate computer tools.	C2
c.2	Implement control charts for variables data (x-bar and R charts) and attribute data (p, np, c, and u charts) using EXCEL, SPSS, and Minitab software.	C5

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

d.1	Judge effectively both orally and in written forms for topics related to statistics and quality control.	D2
d.2	Defend acquisition of new knowledge as a part of life- long learning strategy.	D5
d.3	Review technical reports of the statistical results of data obtained.	D6

V. Course Content:

A – Theoretical Aspect:

	-						
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours			
1.	Introduction to Quality, Quality Control and Improvement.	 Meaning of Quality, Quality Control and Quality Improvement Brief History of Quality Control and Improvement Statistical Methods of Quality Control and Improvement Other Aspects of Quality Control and Improvement 	1	2			
2.	Modeling Process Quality.	 Describing Variation Important Discrete Distributions Important Continuous Distributions 	2	2			
3.	Inferences about Process Quality.	 Statistics and Sampling Distributions Point Estimation of Process Parameters	3,4	4			

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

		 Statistical Inference for Two Samples Statistical Inference for more than Two Populations 		
4.	Methods and Philosophy of Statistical Process Control.	 Introduction to statistical process control Chance and Assignable Causes of Quality Statistical Basis of the Control Chart The Rest of the "Magnificent Seven" Implementing SPC An Application of SPC 	5,6	4
5.	Control Charts for Variables.	 Introduction Control Charts for x and R Control Charts for x and S The Shewhart Control Chart for Individual Measurements Summary of Procedures for x, R, and S Charts Applications of Variables Control Charts 	7	2
6.	Mid Term Exam.	• The first 5 chapters.	8	2
7.	Control Charts for Attributes.	 Introduction Control Charts for Fraction Nonconforming Control Charts for Nonconformities (Defects) 	9	2

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

		 Choice between Attributes and Variables Control Charts Guidelines for Implementing Control Charts 		
8.	Process and Measurement System Capability Analysis.	 Introduction Process Capability Analysis Using a Histogram or a Probability Plot Process Capability Ratios Process Capability Analysis Using a Control Chart Process Capability Analysis Using Designed Experiments Gage and Measurement System Capability Studies Setting specification Limits on Discrete Components 	10,11	4
9.	Acceptance Sampling.	 Lot-by-Lot Acceptance Sampling for Attributes Acceptance Sampling Problem Single-Sampling Plans for Attributes Double, Multiple, and Sequential Sampling Military Standard 105E (ANSI/ASQC Z1.4, ISO 2859) 	12,13	4
10.	Six Sigma.	 DMAIC Application of Six Sigma tools to minimize production variability 	14	2

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

		Taguchi Loss Function		
11.	Lean Production and Quality.	 The Birth of Lean Production The Lean Production System Stability Just-In-Time 	15	2
12.	Final Exam.	• All the chapters.	16	2
	Number of Weeks /and Units Per Semester 16 32			

B - Tu	itorial	Aspect:

Order	Tasks/ Experiments	Number of Weeks	Contact Hours	Learning Outcomes
1.	 Statistical Methods of Q. C. and Improvement Important Discrete Distributions Important Continuous Distributions 	1,2	4	a1, a2
2.	 Statistics and Sampling Distributions Point Estimation of Process Parameters Statistical Inference for Two Samples Statistical Inference for more than two populations 	3,4	4	a1, a2, b1
3.	 Statistical process control Chance and assignable causes of quality Statistical basis of the control chart, The rest of the "Magnificent Seven" 	5,6	4	a1, a2, b1, b2

Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

	• Implementing SPC, An Application of SPC			
4.	 Control Charts of Variables Control Charts for x and R Control Charts for x and S The Shewhart Control Chart for Individual Measurement. 	7	2	a2, b1, b2
5.	Applications of variables control chartsControl Charts for attributes	8	2	a2, b1, b2, c2
6.	 Control charts for fraction Nonconforming Control charts for nonconformities (defects) Choice between attributes and variables control charts 	9	2	a2, b1, b2, c2
7.	 Process and measurement system capability analysis Process capability (Cp) analysis using a histogram or a probability plot Process capability ratios Cp analysis using a control chart 	10,11	4	a2, b1, b2, c1, c2
8.	 Cp analysis using designed experiments Gage and measurement system capability studies Setting specification limits on discrete components Estimating the natural tolerances limits of a process Acceptance Sampling problem 	12	2	a2, b2, c1, c2
9.	Single-Sampling Plans for AttributesDouble, Multiple, and Sequential Sampling	13	2	a1, a2, b2

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

VI. Teaching Strategies of the Course:

The teaching strategies of the course are as follows:

- Active Lectures (supported with discussions).
- Tutorials.
- Hands-on Laboratory Work.
- Independent Learning and Work.
- Group Learning and Problem-Based Learning.
- Independent Applications of Engineering Analysis.
- Computer and Web-Based Learning.
- Case Studies.
- Design Work and Projects.
- Directed Self-Study.

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

VI	VII. Assignments:				
Order	Assignments	Aligned CILOs (symbols)	Week Due	Mark	
1.	Use computer software for solving home-works. H.W.1. Determine the mean mode, maiden, range, standard deviation of 50 pieces of measured data. Construct histograms and Stem-and-Leaf Plot	a1, a2, b1, c1, d1, d3	3 rd	6	
2.	H.W.2. Construct probabilities distribution models and normal distribution models.	a1, a2, b1, c1, d1, d2, d3	5 th	6	
3.	H.W.3. Construct control charts.	a1, a2, c2, d1, d3	7 th	6	
4.	H.W.4. Construct variable control charts.	a1, a2, c2, d1, d3	9 th	6	
5.	H.W.5. Construct attribute control charts.	a1, a2, c2, d1, d3	12 th	6	
Total					

,	VIII. Schedule of Assessment Tasks for Students During the Semester:					
Order	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1.	Assignments and Home-Works.	3, 5, 7, 9, 12	30	20%	a1, a2, b1, c1, c2, d1, d2, d3	
2.	Quizzes.	6, 11	15	10%	a1, a2, b1, b2, c1, c2	

Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

3.	Mid-Term Exam.	8	15	10%	a1, a2, b1, b2
4.	Final Exam.	16	90	60%	a1, a2, b1, b2
	Total		150	100%	

IX. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1. Montgomery, Douglas C., 2009, Introduction to Statistical Quality Control, 6th Ed., N.Y., John Wiley and Sons.
- 2. Amitava Mitra, 2008, Fundamentals of quality control and improvement, 3rd Ed., N.Y., John Wiley and Sons.

2- Essential References.

- 1. Vardeman, Strphen B, Jobe, J Marcus, 2016, Statistical method for quality assurance, N.Y., Springer Verlag.
- 2. William Navidi, 2011, Statistics for Engineers and Scientists, 3rd Ed., N.Y., McGraw-Hill.
- 3. George, M. L., 2002, Lean Six Sigma, N.Y., McGraw-Hill.

3- Electronic Materials and Web Sites etc.

- A Guide to Simulation in MINITAB https://web.ma.utexas.edu/users/mks/358Ksp06/minitabsim.html
- 2. Journal of Quality Technology Taylor & Francis https://www.tandfonline.com/loi/ujqt20
- 3. Industrial Quality Control, Journal of the American Society for Quality Control http://www.speciation.net/Database/Journals/Industrial-Quality-Control-;i1161

Prepared by Dr. Abdulsalam Almekhlafy Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

- 4. MIT Open Courseware, Probability And Its Applications To Reliability, Quality Control, And Risk Assessment

 https://ocw.mit.edu/courses/nuclear-engineering/22-38-probability-and-its-applications-to-reliability-quality-control-and-risk-assessment-fall-2005/
- 5. The National Programme on Technology Enhanced Learning (NPTEL), Six Sigma https://nptel.ac.in/courses/110/105/110105039/#

	X. Course Policies:
1.	Class Attendance: The students should have more than 75 % of attendance according to rules and regulations of the Faculty.
2.	Tardy: The students should respect the timing of attending the lectures. They should attend within 10 minutes from starting of the lecture.
3.	Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam.
4.	Assignments & Projects: The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.

Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

5.	Cheating: If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquires.			
6.	Plagiarism: The student will be terminated from the Faculty, if one student attend the exam on another behalf according to the policy, rules and regulations of the university.			
7.	 Other policies: All the teaching materials should be kept out the examination hall. The mobile phone is not allowed. There should be a respect between the student and his teacher. 			

Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti