

Course Specification of Programmable Logic Controller (PLC)

I.	I. Course Identification and General Information:							
1.	Course Title:	Programmable Logic Controller (PLC).						
2.	Course Code & Number:	MT305.						
			C.1	Н.		TOTAL		
3.	Credit Hours:	Th.	Seminar	Pr.	Tu.	CR. HRS.		
		2	-	- 2 - 3				
4.	Study Level/ Semester at which this Course is offered:	Fourth Year- First Semester.						
5.	Pre –Requisite (if any):	Logic System Design, Electrical Machines (1), and Industrial Instrumentation and Measurements.						
6.	Co –Requisite (if any):	None.						
7.	Program (s) in which the Course is offered:	Mechatronics Engineering Program.						
8.	Language of Teaching the Course:	English.						
9.	Location of Teaching the Course:	Mechatronics Engineering Department.						
10.	Prepared by:	Eng. Mahran Alabsie.						
11.	Date of Approval:							

II. Course Description:

Programmable Logic Controllers (PLCs) are used in many industrial and commercial processes, so the intent of this course is to have students develop the basic level skills of PLCs required by the industry. The PLC course covers the following topics: classical control, processor units, memory organization, relay type devices, timers, counters, data manipulators, and programming. The study

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

of the course includes basic to intermediate theoretical classes as well as practical applications of PLCs in the Lab. Students are required to develop a team-work course-project to demonstrate various abilities intended by the course.

	ourse Intended learning outcomes (CILOs) of he course	Referenced PILOs
a.1	Identify the main hardware devices and software tools of classical control and programmable logic control.	A2
a.2	Describe the different Programmable Logic Controllers (PLCs) functions and characteristics.	A4
b.1	Compare between the programming methods (Function block, ladder diagram, Grafcet) of PLCs and analyze the functions to solve mechatronics system problems.	B1
b.2	Create computer models and programs for monitoring, interfacing and automating industrial processes and applications.	В3
c.1	Implement safely the wiring of classical control and PLC for various automatic applications.	C1
c.2	Demonstrate the appropriate hardware and software components to design standard solutions to practical mechatronics problems.	C5
d.1	Evaluate problem solving skills, teamwork and communication skills during the course activities.	D1
d.2	Examine technical reports, discuss ideas, and justify results creatively through different forms.	D6

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
a1. Identify the main hardware devices and software tools of classical control and programmable logic control.	Active Lectures.Tutorials.Hands-on Laboratory Work.Group Learning.	Written Assessments.Homeworks and Assignments.		
a2. Describe the different Programmable Logic Controllers (PLCs) functions and characteristics.	Active Lectures.Tutorials.Group Learning.	 Written Assessments. Homeworks and Assignments.		

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
b1. Compare between the programming methods (Function block, ladder diagram, Grafcet) of PLCs and analyze the functions to solve mechatronics system problems.	Active Lectures.Tutorials.Hands-on Laboratory Work.Group Learning.	 Written Assessments. Homeworks and Assignments. Presentations. Simulations. 				
b2. Create computer models and programs for monitoring, interfacing and automating industrial processes and applications.	 Active Lectures. Tutorials. Design Work and Projects. Independent Learning and Work. Computer and Web-Based Learning. 	 Written Assessments. Homeworks and Assignments. Case Studies. Simulations. 				

Prepared by Eng. Mahran Alabsie

Head of Department Ass. Prof. Dr. Abdul-Malik Momin

Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
c1. Implement safely the wiring of classical control and PLC for various automatic applications.	Hands-on Laboratory Work.Design Work and Projects.	Practical Assessment.		
c2. Demonstrate the appropriate hardware and software components to design standard solutions to practical mechatronics problems.	 Hands-on Laboratory Work. Design Work and Projects. Case Studies. 	 Practical Assessment. Project Reports. Laboratory Reports.		

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching						
Strategies and Assessment Strategies:						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
d1. Evaluate problem solving skills, teamwork and communication skills during the course activities.	 Group Learning and Problem-Based Learning. The Use of Communication and Information Technology. Design Work and Projects. 	 Practical Assessment. Homework and Assignments. Project Reports. 				
d2. Examine technical reports, discuss ideas, and justify results creatively through different forms.	 Group Learning and Problem-Based Learning. Design Work and Projects.	 Presentations. Project Reports.				

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

IV. Course Content:

IV.	IV. Course Content:					
	A – Theoretic	cal Aspect:				
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact Hours	
1.	Overview of Classical Control Systems.	a1, a2	 Marking of electromechanically circuits. Control devices Mechanical switches Proximitry switches Contactors and control relay Timers. 	1	2	
2.	Classical Control Circuits Diagrams and Applications.	a1, a2	 Contactors and overloads. Ladder diagram. On / STOP circuit. Star / Delta motor starting. Valve Control. ATS. 	2	4	
3.	Introduction to PLC.	a1, a2	 PLC in a Control System. Advantages/disadvantages of PLC PLC Brands. DCS Control . SCADA. 	1	2	
4.	PLC Hardware Components.	a1, a2, c1, c2	 Basic architecture Basic Components CPU Power Supply I/O unit Memory Design and Addressing 	1	2	

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi

- Programming Devices

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

			 Type of I/O Devices Discrete input/output Analog input/output PWM. 		
5.	Basic of PLC Programming.	a1, a2, b1, b2	 Program scan. Programming methods. Ladder diagram. Function block. GRAFSET. On/Off ladder diagram Internal relay. Latching relays. 	1	2
6.	Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs.	b1, b2, c1	 Motor starters manually operated switches. Auto operated. Converting classical control diagrams into PLC ladder programs. Wiring plc. Logic operation. 	2	4
7.	Mid-Term Exam.	a1, a2, b1, b2, c1,c2	The first 6 chapters.	1	2
8.	PLC Function Programming.	b1, b2, c2, d1	 Timer programming Timer Instructions ON-Delay/OFF-Delay Retentive and non-Retentive Timers Counter programming 	4	8

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

			 Counter Instructions. UP/DOWN Counters. Shift Register Programming Arithmetic Instructions. Data Register. 		
9.	Industrial Applications.	b2, c1, c2	 Analog measurements and control. PWM industrial application. Mentoring system. Network example 	2	4
10.	Final Exam.	a1, a2, b1, b2, c1,c2	All the chapters.	1	2
	Number of Weeks /and Units Per Semester			16	32

B - Pr	B - Practical Aspect:					
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes		
	Practical 1: Classical Control.					
	Familiarization with control circuit					
	elements.					
	- push buttons.					
	- Toggle switches					
1.	- selector switches.	1	2	c1, c2, d1, d2		
	- Detection switches					
	- limit switches					
	- Level switches					
	- Sensors (inductive, capacitive,					
	photoelectric,)					

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

	• Indicator lights (red, green, yellow,			
	lamps)			
	Relays			
	Magnetic contactors			
	Miniature Circuit breakers			
	EKTS , Automation Studios and Festo			
	simulation programs for Classical Control			
	Practical 2: Classical Control			
	Reading and creating line diagrams			
	Power and control circuit			
	Connecting loads and control devices			
	Motor start, stop, and overload control		6	a1 b1 a1 a2
2.	Motor control from two places	3		a1, b1, c1, c2, d2
	Three phase motors forward and reverse control			<u>u</u> 2
	Motor star-delta control			
	• ATS			
	Timer applications			
	Practical 3: PLC			
	Logo- Lovato – S7 programming			
	Installation.			
3.	Using programming console	2	4	b1, b2, c1, c2,
3.	■ How to enter program	2	7	d1, d2
	(run/monitor/program mode)			
	Clear memory			
	 Modify program (insert/delete) 			

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

	 Monitor input/output status Basic logic + I/O wiring "And" and "or" control circuit. Holding/latching circuit including stop pushbutton (motor control). 			
4.	Practical 4: Convert the classical examples to PLC ladder diagram • Motor Control: • Use "set/reset" • forward/reverse motor control • ATS.	2	4	b1, d1, d2
5.	Practical 5: Timers Mode (On delay – Off delay – On/off delay – Flasher timer – Weekly timer). • Traffic ligts.Star/ Delta.	1	2	b2, c1, c2, d1, d2
6.	 Practical 6: Basic counter application Basic reversible counter application Adding counter to the reversing motor control (automatic - latching) with timer. Garage cars Counter. Production line counter. 	1	2	b1, b2, c1, c2, d1, d2

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

7.	 Practical 7: Shift register. Data register. Multiplexer. PWM. Application example. 	1	2	b1, b2, c1, c2, d1, d2
8.	Practical 8: Analog input/ output function. • Temperature sensor calibration and monitoring. Temperature control.	1	2	b1, b2, c1, c2, d1, d2
9.	Course projects: Students are encouraged to choose a PLC project in which he is required to build a prototype, build the necessary PLC program. The following are some examples: A. Arithmetic Instructions: Car park control Advanced car park control B. Analogue output: Flow control C. Arithmetic and analogue input/output: Conveyor with a weight detector and variable speed drive D. trouble shooting:	2	4	a1, a2, b1, b2, c1, c2, d1, d2

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

	Trouble shooting PLC-controlled application using a given schematic diagram: electrical power &control, and electro-pneumatic			
Nı	ımber of Weeks /and Units Per Semester	14	28	

V. Teaching Strategies of the Course:

The teaching strategies of the course are as follows:

- Active Lectures.
- Tutorials.
- Hands-on Laboratory Work.
- Independent Learning and Work.
- Group Learning and Problem-Based Learning.
- The Use of Communication and Information Technology.
- Design Work and Projects.
- Independent Learning and Work.
- Computer and Web-Based Learning.
- Case Studies.

VI. Assessment Methods of the Course:

The assessment methods of the course are as follows:

- Written Assessments.
- Homeworks and Assignments.
- Presentations.
- Simulations.

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

- Case Studies.
- Practical Assessment.
- Project Reports.
- Laboratory Reports.
- Presentations.

VII.	VII. Assignments:							
Order	Assignments	Aligned CILOs (symbols)	Week Due	Mark				
1.	Classical Control Circuits Diagrams and Applications	a1, d2	2	3				
2.	PLC Hardware Components and Programming	a2, d2	4	3				
3.	PLC Wiring Diagrams and Ladder Logic Programs	c1, d1, d2	8	3				
4.	PLC Function Programming	b1, c2, d2	12	3				
5.	Industrial Applications	b2, c2, d1, d2	14	3				
	Total							

VIII.	VIII. Schedule of Assessment Tasks for Students During the Semester:						
Order	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes		
1.	Assignments.	2, 4, 8, 12, 14	15	10%	a1, a2, b1, b2, c1,c2, d1, d2		

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

2.	Practical Experiments.	Weekly	15	10%	a1, a2, b1, b2, c1,c2, d1, d2
3.	Mid-Term Exam.	9	15	10%	a1, a2, b1, b2, c2
4.	Practical Projects.	12-14	15	10%	a1, a2, b1, b2, c1, c2, d1, d2
5.	Final Exam.	16	90	60%	a1, a2, b1, b2, c2
Total			150	100%	

IX. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- Frank D. Petruzella, 2011, Programmable Logic Controllers, 4th edition, McGraw-Hill, NY.
- 2. L.A. Bryan & E.A. Bryan, 2000, Programmable Controllers Theory and Implementation, 2 nd edition, Industrial Text Company, Georgia, USA.

2- Essential References.

- Colin D. Simpson, 2006, Programmable Logic Controllers, 3 rd edition, Prentice Hall, USA.
- 2. E. A. Parr, 2003, Programmable Controllers An Engineer's Guide, 3 rd edition, Newnes, Oxford. 9780750657570
- 3. John W. Webb and Ronald A. Reiss, 2002, Programmable Logic Controllers Principle and Applications, 5 th edition, Prentice Hall, N.J., USA.

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

4.	JR Hackworth and ED Hackworth, 2004, Programmable Logic Controllers-
	Programming Method and Applications, Pearson Education, N.J., USA.

5. Frank D. Petruzella, 2011, Programmable Logic Controllers Lab Manual, 4 th edition, McGraw-Hill, N.Y., USA.

3- Electronic Materials and Web Sites etc.

 PLC Technician Training Online Education Program https://www.plctechnician.com/

2. TPC Training https://www.tpctraining.com/collections/plc-training

3. Vast PLC

https://www.vastplc.com/

3	X. Course Policies:
	Class Attendance:

1. The students should have more than 75 % of attendance according to rules and regulations of the Faculty.

Tardy:

2. The students should respect the timing of attending the lectures. They should attend within 10 minutes from starting of the lecture.

Exam Attendance/Punctuality:

3. The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam.

4. Assignments & Projects:

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

	The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.						
5.	Cheating: If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquires.						
6.	Plagiarism: The student will be terminated from the Faculty, if one student attend the exam on another behalf according to the policy, rules and regulations of the university.						
7.	Other policies: All the teaching materials should be kept out the examination hall. The mobile phone is not allowed. There should be a respect between the student and his teacher. 						

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Dr. Tarek A. Barakat			
Ву	President of Quality Assurance Unit: Ass. Prof. Dr. Mohammed Algorafi			
	Head of Mechatronics Engineering Department: Ass. Prof. Dr. Abdul-Malik Momin			
	Dr. Hatem Al-Dois			
	Deputy Rector for Academic Affairs Dr. Ibrahim AlMutaa			
	Ass. Prof. Dr. Ahmed Mujahed			
	Dr. Munaser Alsubri			

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

Course Plan of Programmable Logic Controller (PLC)

I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Eng. Mahran Alabsie	Office Hours					
Location& Telephone No.	00967-772764549	SAT	SUN	MON	TUE	WED	THU
E-mail							

IJ	II. Course Identification and General Information:						
1.	Course Title:	Progra	mmable Logi	ic Contr	oller (PL	LC).	
2.	Course Code & Number:	MT30	5.				
3.	Credit Hours:			TOTAL CR. HRS.			
4.	Study Level/ Semester at which this Course is offered:	Fourth Year- First Semester					
5.	Pre –Requisite (if any):	Logic System Design, Electrical Machines (1), and Industrial Instrumentation and Measurements.					
6.	Co –Requisite (if any):	None.					
7.	Program (s) in which the Course is offered:	Mechatronics Engineering Program.					
8.	Language of Teaching the Course:	English	n Language.				

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

I	9.	System of Study:	Semesters.
	10.	Mode of Delivery:	Lectures and Labs.
	11.	Location of Teaching the Course:	Mechatronics Engineering Department.

III. Course Description:

Programmable Logic Controllers (PLCs) are used in many industrial and commercial processes, so the intent of this course is to have students develop the basic level skills of PLCs required by the industry. The PLC course covers the following topics: classical control, processor units, memory organization, relay type devices, timers, counters, data manipulators, and programming. The study of the course includes basic to intermediate theoretical classes as well as practical applications of PLCs in the Lab. Students are required to develop a team-work course-project to demonstrate various abilities intended by the course.

	Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a.1	Identify the main hardware devices and software tools of classical control and programmable logic control.	A2
a.2	Describe the different Programmable Logic Controllers (PLCs) functions and characteristics.	A4
b.1	Compare between the programming methods (Function block, ladder diagram, Grafcet) of PLCs and analyze the functions to solve mechatronics system problems.	B1
b.2	Create computer models and programs for monitoring, interfacing and automating industrial processes and applications.	В3

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

c.1	Implement safely the wiring of classical control and PLC for various automatic applications.	C1
c.2	Demonstrate the appropriate hardware and software components to design standard solutions to practical mechatronics problems.	C5
d.1	Evaluate problem solving skills, teamwork and communication skills during the course activities.	D1
d.2	Examine technical reports, discuss ideas, and justify results creatively through different forms.	D6

V.	Course Content:			
	A – Theoretical Aspec	et:		
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours
1.	Overview of Classical Control Systems.	 Marking of electromechanically circuits. Control devices Mechanical switches Proximitry switches Contactors and control relay Timers. 	1	2
2.	Classical Control Circuits Diagrams and Applications.	 Contactors and overloads. Ladder diagram. On / STOP circuit. Star / Delta motor starting. Valve Control. ATS. 	2,3	4
3.	Introduction to PLC.	 PLC in a Control System. Advantages/disadvantages of PLC PLC Brands. 	4	2

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

		• DCS Control.		
4.	PLC Hardware Components.	 SCADA. Basic architecture Basic Components CPU Power Supply I/O unit Memory Design and Addressing Programming Devices Type of I/O Devices Discrete input/output Analog input/output PWM. 	5	2
5.	Basic of PLC Programming.	 Program scan. Programming methods. Ladder diagram. Function block. GRAFSET. On/Off ladder diagram Internal relay. Latching relays. 	6	2
6.	Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs.	 Motor starters manually operated switches. Auto operated. Converting classical control diagrams into PLC ladder programs. Wiring plc. Logic operation. 	7,8	4
7.	Mid-Term Exam.	The first 6 chapters.	9	2

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

8.	PLC Function Programming.	 Timer programming Timer Instructions ON-Delay/OFF-Delay Retentive and non-Retentive Timers Counter programming Counter Instructions. UP/DOWN Counters. Shift Register Programming Arithmetic Instructions. Data Register. 	10,11,12,13	8
9.	Industrial Applications.	 Analog measurements and control. PWM industrial application. Mentoring system. Network example 	14,15	4
10.	Final Exam.	All the chapters.	16	2
	Number of Weeks /	and Units Per Semester	16	32

B - Pr	B - Practical Aspect:					
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes		
1.	Practical 1: Classical Control. • Familiarization with control circuit elements. - push buttons. - Toggle switches - selector switches. - Detection switches - limit switches	1	2	c1, c2, d1, d2		

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

	- Level switches			
	 Sensors (inductive, capacitive, photoelectric,) 			
	• Indicator lights (red, green, yellow, lamps)			
	Relays			
	Magnetic contactors			
	Miniature Circuit breakers			
	EKTS , Automation Studios and Festo simulation programs for Classical Control			
	Practical 2: Classical Control			
	Reading and creating line diagrams			
	Power and control circuit			
	Connecting loads and control devices			
	Motor start, stop, and overload control			a1, b1, c1, c2,
2.	Motor control from two places	2,3,4	6	d2
	Three phase motors forward and reverse control			
	Motor star-delta control			
	• ATS			
	Timer applications			
	Practical 3: PLC			
3.	Logo- Lovato – S7 programming	5,6	4	b1, b2, c1, c2,
5.	Installation.	5,0	⊤	d1, d2
	Using programming console			

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

	 How to enter program (run/monitor/program mode) Clear memory Modify program (insert/delete) Monitor input/output status Basic logic + I/O wiring "And" and "or" control circuit. Holding/latching circuit including stop pushbutton (motor control). 			
4.	Practical 4: Convert the classical examples to PLC ladder diagram • Motor Control: • Use "set/reset" • forward/reverse motor control • ATS.	7,8	4	b1, d1, d2
5.	Practical 5: Timers Mode (On delay – Off delay – On/off delay – Flasher timer – Weekly timer). • Traffic ligts.Star/ Delta.	9	2	b2, c1, c2, d1, d2
6.	 Practical 6: Basic counter application Basic reversible counter application Adding counter to the reversing motor control (automatic - latching) with timer. Garage cars Counter. 	10	2	b1, b2, c1, c2, d1, d2

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

	 Production line counter. 			
7.	 Practical 7: Shift register. Data register. Multiplexer. PWM. Application example. 	11	2	b1, b2, c1, c2, d1, d2
8.	Practical 8: Analog input/ output function. • Temperature sensor calibration and monitoring. Temperature control.	12	2	b1, b2, c1, c2, d1, d2
9.	Course projects: Students are encouraged to choose a PLC project in which he is required to build a prototype, build the necessary PLC program. The following are some examples: E. Arithmetic Instructions: Car park control Advanced car park control F. Analogue output: Flow control G. Arithmetic and analogue input/output: Conveyor with a weight detector and variable speed drive	13,14	4	a1, a2, b1, b2, c1, c2, d1, d2

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

	H. trouble shooting: • Trouble shooting PLC-controlled application using a given schematic diagram: electrical power &control, and electro-pneumatic			
N	umber of Weeks /and Units Per Semester	14	28	

VI. Teaching Strategies of the Course:

The teaching strategies of the course are as follows:

- Active Lectures.
- Tutorials.
- Hands-on Laboratory Work.
- Independent Learning and Work.
- Group Learning and Problem-Based Learning.
- The Use of Communication and Information Technology.
- Design Work and Projects.
- Independent Learning and Work.
- Computer and Web-Based Learning.
- Case Studies.

VII. Assignments:					
Order	Assignments Aligned CILOs (symbols) Week Due Mark				
1.	Classical Control Circuits Diagrams and Applications	a1, d2	2	3	

Prepared by Eng. Mahran Alabsie

Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

2.	PLC Hardware Components and Programming	a2, d2	4	3	
3.	PLC Wiring Diagrams and Ladder Logic Programs	c1, d1, d2	8	3	
4.	PLC Function Programming	b1, c2, d2	12	3	
5.	Industrial Applications	b2, c2, d1, d2	14	3	
	Total				

VIII. Schedule of Assessment Tasks for Students During the Semester:						
Order	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1.	Assignments.	2, 4, 8, 12, 14	15	10%	a1, a2, b1, b2, c1,c2, d1, d2	
2.	Practical Experiments.	Weekly	15	10%	a1, a2, b1, b2, c1,c2, d1, d2	
3.	Mid-Term Exam.	9	15	10%	a1, a2, b1, b2, c2	
4.	Practical Projects.	12-14	15	10%	a1, a2, b1, b2, c1, c2, d1, d2	
5.	Final Exam.	16	90	60%	a1, a2, b1, b2, c2	
Total			150	100%		

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

IX. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1. Frank D. Petruzella, 2011, Programmable Logic Controllers, 4 th edition, McGraw-Hill , NY.
- 2. L.A. Bryan & E.A. Bryan, 2000, Programmable Controllers Theory and Implementation, 2 nd edition, Industrial Text Company, Georgia, USA.

2- Essential References.

- 1. Colin D. Simpson, 2006, Programmable Logic Controllers, 3 rd edition, Prentice Hall, USA.
- 2. E. A. Parr, 2003, Programmable Controllers An Engineer's Guide, 3 rd edition, Newnes, Oxford. 9780750657570
- 3. John W. Webb and Ronald A. Reiss, 2002, Programmable Logic Controllers Principle and Applications, 5 th edition, Prentice Hall, N.J., USA.
- 4. JR Hackworth and ED Hackworth, 2004, Programmable Logic Controllers-Programming Method and Applications, Pearson Education, N.J., USA.
- 5. Frank D. Petruzella, 2011, Programmable Logic Controllers Lab Manual, 4 th edition, McGraw-Hill, N.Y., USA.

3- Electronic Materials and Web Sites etc.

- 1. PLC Technician Training Online Education Program https://www.plctechnician.com/
- 2. TPC Training https://www.tpctraining.com/collections/plc-training
- Vast PLC https://www.vastplc.com/

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

X. Course Policies:						
1.	Class Attendance: The students should have more than 75 % of attendance according to rules and regulations of the Faculty.					
2.	Tardy: The students should respect the timing of attending the lectures. They should attend within 10 minutes from starting of the lecture.					
3.	Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam.					
4.	Assignments & Projects: The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.					
5.	Cheating: If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquires.					
6.	Plagiarism: The student will be terminated from the Faculty, if one student attend the exam on another behalf according to the policy, rules and regulations of the university.					
7.	 Other policies: All the teaching materials should be kept out the examination hall. The mobile phone is not allowed. 					

Prepared by Eng. Mahran Alabsie Head of Department Ass. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi

There should be a respect between the student and his teacher.

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad