Department: Electrical Engineering

Title of the Program: Electrical Power and Machines

Engineering

Course Specification of Power Transmission Systems

I. (I.Course Identification and General Information:							
1.	Course Title:	Power	Transmissi	on Systen	ns			
2.	Course Code &Number	PME2	31					
			C.	Н		Total		
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total		
		2	2	-	-	3		
4.	Study level/ semester at which this course is offered:	Third year/ Second Semester						
5.	Pre –requisite (if any):	Electri	cal circuits	2 (PME1	12)			
6.	Co –requisite (if any):	Electri	cal Machine	es 2 (PMI	E224)			
7.	Program (s) in which the course is offered:	Electri	cal Power a	nd Machi	nes Engi	neering		
8.	Language of teaching the course:	Englis	h					
9.	Location of teaching the course:	Class						
10.	Prepared By:	Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif						
11.	Date of Approval							

II. Course Description:

This course is intended to give the power students full concept about the transmission of power from the power generation plants to distribution systems. The course gives the idea of the transmission systems which enable the students to design the power transmission lines. It is intended to enhance the knowledge of electrical power transmission and develop skills.

The course topics focus on fundamentals, calculations and analysis of transmission systems, that

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

University of Sana'a
Faculty of Engineering
Department: Electrical Engineering
Title of the Program: Electrical Power and Machines

Engineering

includes: parameters, impedance, admittance, voltage, current and powers of transmission systems and their components also the use of different techniques, laws, and theorems to analyze their types.

III.	Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Define the different types of cables used in underground and overhead transmission lines.	A1
a2	Define the effect of the parameters, series impedance and shunt admittance of a transmission line on the line performance	A1
b1	Perform the calculation techniques of a transmission system using normal and per unit systems of calculations.	B1
b2	Perform the calculation of the length and propagation velocity of the travelling waves of the transmission line.	B2
c1	Obtain the value of series inductance and shunt capacitance of a transmission line.	C1
c2	Differentiate between the approximate and exact solutions of analyzing transmission lines.	С3
d1	Communicate computer and internet to extract information related to his field of study.	D5
d2	Evaluate the text books and materials related to the power transmission field using faculty library and computer and internet resources for self-learning activities and enhance the learning progress.	D5

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines

Engineering

` /	(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:						
(Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
a1-	Define the different types of cables used in underground and overhead transmission lines.	Lecture,Tutorials,	Assignments,Written exams,				
a2-	Define the effect of the parameters, series impedance and shunt admittance of a transmission line on the line performance.		Written exams,Quizzes,Written report				

	(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:					
	Course Intended Learning Outcomes Teaching strategies Assessment Strategies					
b1-	Perform the calculation techniques of a transmission system using normal and per unit systems of calculations.	■ Lecture	Assignments,Written exams,			
b2-	Perform the calculation of the length and propagation velocity of the travelling waves of the transmission line.	discussion, Homework	Quizzes,Written report			

©Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
c1- Obtain the value of series inductance and shunt capacitance of a transmission line.	Lecture,Tutorials,	Assignments,Written exams,Quizzes,			

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Electrical Power and Machines

Engineering

c2-	Differentiate	between	the	-	Interactive class	•	Written report
approximate and exact solutions of				discussion,			
analyzing transmission lines.			•	Homework			

` ′	(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes			Teaching strategies	Assessment Strategies		
d1-	Communicate computer and internet to extract information related to his field of study.		Lecture,	Assignments,		
d2-	Evaluate the text books and materials related to the power transmission field using faculty library and computer and internet resources for self-learning activities and enhance the learning progress.		Tutorials, Interactive class discussion, Homework	Written exams,Quizzes,Written report		

IV.	IV. Course Content:						
	A – Theoretical A	spect:					
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours		
1.	Basic concepts of power system elements	a1, b1	 AC concept and representation of a system voltage and current. Powers in 1- and 3-phase systems. 	2	4		

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines

Engineering

			 Complex power, power triangle and power factor correction. Direction of power flow in a system. Voltage and current for balanced and unbalanced system. Per unit calculation system. Per unit values of 1-phase and 3-phase electrical quantities. Series parameters of 		
2.	Series impedance of transmission lines	a1,a2,b2,c1	 Series parameters of transmission lines. Inductance of one conductor of a transmission line. Inductance of 1-phase 2-wire transmission line. Inductance of composite conductor lines. Inductance of a 3-phase line with equilateral and inequilaterally spacing. Inductance of a 3-phase line with horizontal and vertical flat spacing. Inductance of a 3-phase parallel-circuit lines. 	2	4

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Electrical Power and Machines

Engineering

3.	Shunt admittance of transmission lines	a1,a2,b2,c1	 Shunt parameters of transmission lines: Electric field of a long straight conductor of the transmission line. Capacitance of 1-phase 2-wire transmission line. Capacitance of a 3-phase line with equilateral and inequilaterally spacing. Calculation of inductance and capacitance of ACSR line conductor by derived formula or by standard provided tables. 	2	4
4.	Overhead 3-phase power transmission lines	a2, ,b1,b2, c1,c2	 Classification of overhead transmission lines according to length. Approximate solution of short and medium transmission lines. Exact solution of transmission lines. Generalized constants of transmission lines Performance equations of transmission lines using 	3	6

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Electrical Power and Machines

Engineering

			 approximate and exact solutions. Analysis of transmission lines using their performance equations and phasor and circle diagrams. Series and shunt reactive compensation of transmission lines. 		
5.	Travelling waves on overhead transmission lines	a1, b1	 Incident and reflected waves of the transmission line voltage and current. Calculation of the length and propagation speed of the incident and reflected travelling waves. Incident and reflected waves on short-circuited transmission lines. 	1	2
6.	Representation of transmission lines on power system diagram.	a1,a2,b1,b2	 Power system one-line diagram components. Impedance and reactance diagrams of one-line diagrams with per unit and actual values. Analysis of one-line diagram using its 	1	2

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Electrical Power and Machines

Engineering

8.	Insulator of overhead transmission lines	a1,c2,d1,d2	 Important role of insulator in the transmission line operation. Insulator types and materials. Advantages of suspension type insulator. Voltage distribution across insulator strings. 	1	2
	transmission mes		 Span of transmission line in hilly area. Important role of insulator in the transmission line operation. 		
7.	Mechanical design of power overhead transmission lines	a1, b1,d1,d2	 Calculation of sag and tension for flat transmission lines. Effect of wind and ice covering transmission lines. 	2	4
			impedance and reactance diagrams.		

B – Tutorial Aspect:						
Order	Tasks/ Experiments	Number of Weeks		Learning Outcomes		
1.	Powers in 1- and 3-phase systems.	2	4	a1		

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines

Engineering

	 Complex power, power triangle and power factor correction. Direction of power flow in a system. Voltage and current for balanced and unbalanced system. 			
2.	 conductor of a transmission line. Inductance of 1-phase 2-wire transmission line. Inductance of composite conductor lines. Inductance of a 3-phase line with equilateral and inequilaterally spacing. Inductance of a 3-phase line with horizontal and vertical flat spacing. Inductance of a 3-phase parallel-circuit lines. 	3	6	a2,b2
3.	 Capacitance of 1-phase 2-wire transmission line. Capacitance of a 3-phase line with equilateral and inequilaterally spacing. Calculation of inductance and capacitance of ACSR line conductor by derived formula or by standard provided tables. 	2	4	a1,b1,b2
4.	 Exact solution of transmission lines. Generalized constants of transmission lines Performance equations of transmission lines using approximate and exact solutions. Analysis of transmission lines using their performance equations and phasor and circle diagrams. Series and shunt reactive compensation of transmission lines. 	2	4	a1, b2

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering
Title of the Program: Electrical Power and Machines

Engineering

5.	 Calculation of the length and propagation speed of the incident and reflected travelling waves. Incident and reflected waves on short-circuited transmission lines. 	2	4	a1,a2,d1
6.	 Impedance and reactance diagrams of one-line diagrams with per unit and actual values. Analysis of one-line diagram using its impedance and reactance diagrams. 	2	4	a2,d2
7.	■ Review	1	2	b1,b2,d1
	Number of Weeks /and Units Per Semester	14	28	

V. Teaching strategies of the course:

- Lectures
- Dialogue and discussion
- Brainstorming
- Problem Solving

VI.	VI. Assignments:						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark			
1.	Exercises 1	a1, b1,d1,d2	4	3.5			
2.	Exercises 2	a1,a2,b1, b2	8	3.5			
3.	Exercises 3	a1,a2,b1, b2,b3,.d1	12	3			
		Total		10			

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines

Engineering

VII	VII. Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes			
1.	Assignments	4,8,12	10	6.7%	a1, a2,b1, b2,d1,d2.			
2.	Quiz (1)	5	10	6.7%	a1, a2, b1, b2.			
3.	Midterm Exam	7	30	20%	a1,a2 b1, b2			
4.	Quiz (1)	10	10	6.7%	a1,a2 b1, b2			
5.	Final Exam (theoretical)	16	90	60%	a1, a2, b1, b2			
	Total grades		150	100%				

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

1- John J. Grainger & William D. Stevenson, 1994, Power System Analysis, 5 Ed, McGRAW-HILL, New York, USA,

2- Essential References.

- 1- Ashfaq Husain, 2007, Electrical Power Systems, 5th Ed CBS Publishers & Distributers, New Delhi, USA. India.
- 2- Dr B. R. Gupta, 2015, Power System Analysis and Design, S Chand & Company Pvt. Ltd. (India).

3- Electronic Materials and Web Sites etc.

1. All Site concerning with Power Transmission Information & Textbooks

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines

Engineering

I	X. Course Policies:
	Class Attendance: A student should attend not less than 75 % of total hours of the subject; otherwise he will not be
1.	able to take the exam and will be considered as exam failure. If the student is absent due to
	illness, he/she should bring a proof statement from university Clinic
	Tardy:
2.	For late in attending the class, the student will be initially notified. If he repeated lateness in
	attending class he will be considered as absent.
	Exam Attendance/Punctuality: A student should attend the exam on time. He is Permitted to attend an exam half one hour from
3.	exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam-
	Assignments & Projects:
4.	The assignment is given to the students after each chapter; the student has to submit all the
	assignments for checking on time-
	Cheating:
5.	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty- Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student. If the
6.	examination committee proofed a plagiarism of a student, he will be disengaged from the Faculty.
	The final disengagement of the student from the Faculty should be confirmed from the Student
	Council Affair of the university.
	Other policies:
7.	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the
′	student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines

Engineering

Lecture notes and assignments my given directly to students using soft or hard copy

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek
By	A. Barakat
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi
	Name of Reviewer from the Department: Assoc. Prof. Dr. Radwan Al bouthigy
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
	Assoc. Prof. Dr. Ahmed Mujahed
	Asst. Prof. Dr. Munasar Alsubri

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Electrical Power and Machines

Engineering

Template for Course Plan of Power Transmission Systems

I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif	Office Hours					
Location& Telephone No.	Faculty of Engineering	SAT	SUN	MON	TUE	WED	THU
E-mail	dmansaif@gmail.com						9-12

II. Course Identification and General Information:							
1-	Course Title:	Power '	Power Transmission Systems				
2-	Course Number & Code:	PME23	1				
			C.	Н		Total	
3-	Credit hours:	Th.	Tu.	Pr.	Tr.	Total	
		2	2	-	-	3	
4-	Study level/year at which this course is offered:	Third year/ Second Semester					
5-	Pre –requisite (if any):	Electric	cal circuits 2	(PME112))		
6-	Co –requisite (if any):	Electric	cal Machines	2 (PME22	24)		
7-	Program (s) in which the course is offered	Electric	al Power and	d Machine	s Enginee	ering	
8-	Language of teaching the course:	English					
9-	System of Study:	Regular					
10-	Mode of delivery:	Semester					
11-	Location of teaching the course:	Class					

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines

Engineering

III. Course Description:

This course is intended to give the power students full concept about the transmission of power from the power generation plants to distribution systems. The course gives the idea of the transmission systems which enable the students to design the power transmission lines. It is intended to enhance the knowledge of electrical power transmission and develop skills.

The course topics focus on fundamentals, calculations and analysis of transmission systems, that includes: parameters, impedance, admittance, voltage, current and powers of transmission systems and their components also the use of different techniques, laws, and theorems to analyze their types.

IV. Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
 - 1. Define the different types of cables used in underground and overhead transmission lines.
- **2.** Define the effect of the parameters, series impedance and shunt admittance of a transmission line on the line performance
- **3.** Perform the calculation techniques of a transmission system using normal and per unit systems of calculations.
- **4.** Perform the calculation of the length and propagation velocity of the travelling waves of the transmission line.
- 5. Obtain the value of series inductance and shunt capacitance of a transmission line.
- **6.** Differentiate between the approximate and exact solutions of analyzing transmission lines.
- 7. Communicate computer and internet to extract information related to his field of study.
- **8.** Evaluate the text books and materials related to the power transmission field using faculty library and computer and internet resources for self-learning activities and enhance the learning progress.

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines

Engineering

V.	Course	Content:
----	--------	----------

A – Theoretical Aspect:

Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact hours
1.	Basic concepts of power system elements	 AC concept and representation of a system voltage and current. Powers in 1- and 3-phase systems. Complex power, power triangle and power factor correction. Direction of power flow in a system. Voltage and current for balanced and unbalanced system. Per unit calculation system. Per unit values of 1-phase and 3-phase electrical quantities. 	1 st ,2 nd	4
2.	Series impedance of transmission lines	 Series parameters of transmission lines. Inductance of one conductor of a transmission line. Inductance of 1-phase 2-wire transmission line. Inductance of composite conductor lines. Inductance of a 3-phase line with equilateral and inequilaterally spacing. Inductance of a 3-phase line with horizontal and vertical flat spacing. Inductance of a 3-phase parallel-circuit lines. 	3 rd ,4 th	4
3.	Shunt admittance of	Shunt parameters of transmission lines:	5 th ,6 th	4

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Service of the servic

Title of the Program: Electrical Power and Machines Engineering

	transmission lines	 Electric field of a long straight conductor of the transmission line. Capacitance of 1-phase 2-wire transmission line. Capacitance of a 3-phase line with equilateral and inequilaterally spacing. Calculation of inductance and capacitance of ACSR line conductor by derived formula or by standard provided tables. 		
4.	Mid-Term Exam	Covers all sub topics up to the 6th week.	7 th	2
5.	Overhead 3- phase power transmission lines	 Classification of overhead transmission lines according to length. Approximate solution of short and medium transmission lines. Exact solution of transmission lines. Generalized constants of transmission lines Performance equations of transmission lines using approximate and exact solutions. Analysis of transmission lines using their performance equations and phasor and circle diagrams. Series and shunt reactive compensation of transmission lines. 	8 th ,9 th ,10 th	6
6.	Travelling waves on overhead	 Incident and reflected waves of the transmission line voltage and current. Calculation of the length and propagation speed of the incident and reflected travelling waves. 	11 th	2

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

University of Sana'a **Faculty of Engineering Department: Electrical Engineering Title of the Program: Electrical Power and Machines**

Engineering

	transmission	 Incident and reflected waves on short-circuited 		
	lines	transmission lines.		
7.	Representation of transmission lines on power system diagram.	 Power system one-line diagram components. Impedance and reactance diagrams of one-line diagrams with per unit and actual values. Analysis of one-line diagram using its impedance and reactance diagrams. 	12 th	2
8.	Mechanical design of power overhead transmission lines	 Calculation of sag and tension for flat transmission lines. Effect of wind and ice covering transmission lines. Span of transmission line in hilly area. 	13 th ,14 th	4
9.	Insulator of overhead transmission lines	 Important role of insulator in the transmission line operation. Insulator types and materials. Advantages of suspension type insulator. Voltage distribution across insulator strings. Method of equalizing voltage distribution across insulator strings. 	15 th	2
10.	Final Exam	All Topics	16 th	2
_	Number of Weeks /and Units Per Semester			

B-T	utorial Aspect:		
Order	Tasks/ Experiments	Number of Weeks	Contact hours
1.	■ Powers in 1- and 3-phase systems.	1 st ,2 nd	4

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines

Engineering

	 Complex power, power triangle and power factor correction. 		
	Direction of power flow in a system.		
	 Voltage and current for balanced and unbalanced system. 		
	conductor of a transmission line.		
	 Inductance of 1-phase 2-wire transmission line. 		
	 Inductance of composite conductor lines. 		
2	 Inductance of a 3-phase line with equilateral and inequilaterally 	3 rd ,4 th ,5 th	6
2.	spacing.	,5 th	O
	 Inductance of a 3-phase line with horizontal and vertical flat 		
	spacing.		
	 Inductance of a 3-phase parallel-circuit lines. 		
	 Capacitance of 1-phase 2-wire transmission line. 		
	 Capacitance of a 3-phase line with equilateral and inequilaterally 		
3.	spacing.	6 th ,7 th	4
	 Calculation of inductance and capacitance of ACSR line conductor 		
	by derived formula or by standard provided tables.		
	 Exact solution of transmission lines. 		
	 Generalized constants of transmission lines 		
	 Performance equations of transmission lines using approximate and 		
4.	exact solutions.	8 th ,9 th	4
	 Analysis of transmission lines using their performance equations 		
	and phasor and circle diagrams.		
	 Series and shunt reactive compensation of transmission lines. 		
	 Calculation of the length and propagation speed of the incident and 		
5.	reflected travelling waves.	2	4
	 Incident and reflected waves on short-circuited transmission lines. 		

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines

Engineering

6.	 Impedance and reactance diagrams of one-line diagrams with per unit and actual values. Analysis of one-line diagram using its impedance and reactance diagrams. 		4
7.	Review	1	2
Number of Weeks /and Units Per Semester			28

VI. Teaching strategies of the course:

- Lectures
- Dialogue and discussion
- Brainstorming
- Problem Solving

VII. Assignments:						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1.	Exercises 1	a1, b1,d1,d2	4	3.5		
2.	Exercises 2	a1,a2,b1, b2	8	3.5		
3.	Exercises 3	a1,a2,b1, b2,b3,.d1	12	3		
Total						

VIII. Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1.	Assignments	4,8,12	10	6.7%	a1, a2,b1, b2,d1,d2.

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines

Engineering

2.	Quiz (1)	5	10	6.7%	a1, a2, b1, b2.
3.	Midterm Exam	7	30	20%	a1,a2 b1, b2
4.	Quiz (1)	10	10	6.7%	a1,a2 b1, b2
5.	Final Exam (theoretical)	16	90	60%	a1, a2, b1, b2
	Total grades		150	100%	

IX. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

1. John J. Grainger & William D. Stevenson, 1994, Power System Analysis, 5 Ed, McGRAW-HILL, New York, USA,

2- Essential References.

- Ashfaq Husain, 2007, Electrical Power Systems,
 5th Ed CBS Publishers & Distributers, New Delhi, USA. India.
- **2.** Dr B. R. Gupta, 2015, Power System Analysis and Design, S Chand & Company Pvt. Ltd. (India).

3- Electronic Materials and Web Sites etc.

1- All Site concerning with Power Transmission Information &Textbooks

T 7	\sim	D 1		
X. (Course	Pol	ICI	es:

Class Attendance:

- 1. A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic
- 2. Tardy:

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines

Engineering

	For late in attending the class, the student will be initially notified. If he repeated lateness in
	attending class he will be considered as absent.
	Exam Attendance/Punctuality:
3.	A student should attend the exam on time. He is Permitted to attend an exam half one hour from
3.	exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam-
	Assignments & Projects:
4.	The assignment is given to the students after each chapter; the student has to submit all the
	assignments for checking on time-
	Cheating:
5.	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty-
	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student. If the
6.	examination committee proofed a plagiarism of a student, he will be disengaged from the Faculty.
	The final disengagement of the student from the Faculty should be confirmed from the Student
	Council Affair of the university.
	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the
7.	student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Prepared by Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad