<u>Course Specification of</u>: Advanced Artificial Intelligence Course Code (MTE562)

•	General Information About the Course:					
73.	Course Title:		Advanced A	Artificial Intelligence		
74.	Course Code and Number:			MTE562		
			Credit	Hours	Total	
75.	Credit Hours:	Lecture	Practical	Seminar/Tutorial	Totai	
		3			3	
76.	Study Level and Semester:	ELEC				
77.	Pre-requisites (if any):					
78.	Co-requisites (if any):					
79.	Program (s) in which the course is offered:	MSc. In N	Aechatronics	Engineering Progra	m	
80.	Language of teaching the course:	English				
81 .	Study System:	Courses &	t Thesis			
82.	Prepared By:	Assoc. Prof. Dr. Farouk Al-Fahaidy				
83.	Reviewed by:	Assoc. Pr	Assoc. Prof. Dr. Radwan AL Bouthigy			
84.	Date of Approval:					

• Course Description:

This course provides deep understanding of advanced topics in artificial intelligence and machine learning. Applied Machine learning has increasing growth and applications in a variety of environments such as, Web Searching Engines, Computational biology, Finance, E-commerce, Space Exploration, Robotics & Intelligent Control, Information extraction, and Social networks. Course covers: an overview on AI: Agents & searching, Neural Networks, Supervised learning, Unsupervised learning, Reinforcement, Deep learning and Evaluation. Through case studies and course project works, graduates develop their problemsolving, intelligent systems' development, and programming skills in the field of machine learning by presenting solutions to variant real-time applications issues and problems.

• Course Intended Learning Outcomes (CILOs):

Upon successful completion of **Advanced Artificial Intelligence Course**, the graduates will be able to:

- a1 Demonstrate deep understanding of advanced AI concepts, applied mathematics and learning & classification techniques related to the field of neural and deep learning machines.
- a2 Explain supervised, unsupervised and reinforcement learning methods, and their issues & applications in different mechatronics systems.

- b1 Apply appropriate learning & classification techniques in the development of innovative mechatronics and intelligent control systems.
- b2- Solve complex domain problems using applied machine learning methods, techniques and software tools.
- c1- Develop intelligent learning algorithm based on neural & deep learning machine for integrating & constructing of intelligent mechatronics systems.
- c2- Use modern programming language, classification, regression and learning techniques for solving mechatronics applications problems
- d1- Prepare term-courses works/ tasks and their documents using engineering methodologies and technical writing and defend on them.
- d2- Conduct independently research that advances and extends knowledge and scholarship in the fields of intelligent mechatronics systems based on machine/deep learning.

• A P	• Alignment of Course Intended Learning Outcomes (CILOs) to Program Intended Learning Outcomes (PILOs)					
	CILOs	PILOs				
 cc. Knowledge and Understanding: Upon successful completion of the Advanced Artificial Intelligence Course, the graduates will be able to: 		CC. Knowledge and Understanding: Upon successful completion of the MSc. In Mechatronics Engineering Program, the graduates will be able to:				
a1.	Demonstrate deep understanding of advanced AI concepts, applied mathematics and learning & classification techniques related to the field of neural and deep learning machines.	A1. Demonstrate in-depth understanding of applied mathematics in Mechatronics engineering, control system, computer engineering and science, and electronics to design more functional, adaptable and cost- effective products.				
a2.	Explain supervised, unsupervised and reinforcement learning methods, and their issues & applications in different mechatronics systems.	A2. Recognize and explain the contemporary engineering technologies and issues in the field of Mechatronics engineering.				
dd. succ Arti will	Cognitive/ Intellectual Skills: Upon ressful completion of the Advanced ificial Intelligence Course, the graduates be able to:	 DD. Cognitive/ Intellectual Skills: Upon successful completion of the MSc. In Mechatronics Engineering Program, the graduates will be able to: 				
b1.	Applyappropriatelearning&classificationtechniquesinthedevelopmentofinnovativemechatronics	B1. Apply appropriate principles, methodologies, techniques, tools and packages in the analysis,				

	and intelligent control systems	11- amount and avaluation of		
	and intempent control systems.	development and evaluation of		
		mechatronics engineering systems.		
b2.	Solve complex domain problems using	B2. Identify, formulate and analyze		
	applied machine learning methods,	research and solve complex		
	techniques and software tools.	Mechatronics engineering problems.		
ee.	Professional and Practical Skills: Upon	EE. Professional and Practical Skills:		
succ	essful completion of the Advanced	Upon successful completion of the MSc. In		
Arti	ficial Intelligence Course, the graduates	Mechatronics Engineering Program, the		
will	be able to:	graduates will be able to:		
c1.	Develop intelligent learning algorithm	C1. Conduct research to solve		
1	based on neural & deep learning	mechatronics engineering problems		
	machine for integrating & constructing	meenationes engineering proceeding.		
	of intelligent mechatronics systems.			
c2.	Use modern programming language,	c2. Use advanced methodologies and		
	classification, regression and learning	skills to solve Mechatronics		
	techniques for solving mechatronics	engineering problems		
	applications problems	engineering problems.		
ff.Tra	nsferable Skills: Upon successful	FF. Transferable Skills: Upon successful		
com	pletion of the Advanced Artificial	completion of the MSc. In Mechatronics		
Inte	lligence Course. the graduates will be able	Engineering Program, the graduates will		
to:		be able to:		
d1.	Prepare term-courses works/ tasks and their	D1 Prepare a complete thesis and term-		
	documents using engineering methodologies	courses works/ tasks write their		
	and technical writing and defend on them.	documents and defend on them		
42	Conduct independently research that	documents and defend on them.		
a2.	conduct independentity research that	D3. Conduct independently and		
	advances and extends knowledge and	communicate research that advances		
	scholarship in the fields of interligent	and extends knowledge and		
	mechanoldoon loorning	scholarship in related fields.		
	machine/deep learning.			

Alignment of CILOs to Teaching and Assessment Strategies					
cc. Alignment of Knowledge and Understanding CILOs:					
Knowledge and Understanding CIL	Os	Teaching Strategies	Assessment Strategies		
a1. Demonstrate deep understan advanced AI concepts, mathematics and learni classification techniques relate field of neural and deep machines.	nding of applied ing & ed to the learning	 Lectures, Self-Learning Problems/Studies, Group/Individual Projects and Studies. 	 Oral & Writing Exams Reports, Written Exam, Assignments. 		
a2. Explain supervised, unsuperv reinforcement learning metho	ised and ods, and	Lectures,Group/Individual	Oral & Writing ExamsReports,		

	their issues & applications in different	Projects and	Written Fxam		
	mechatronics systems	Studies	Δ ssignments		
	incentationics systems	 Active learning 	rssignments		
d	d Alignment of Intellectual Skills CIL Os				
u	u. Anglinient of Interfectual Skins CILOs				
1.1	Intellectual Skills CILOs	Teaching Strategies	Assessment Strategies		
61.	Apply appropriate learning &	• Lectures,	• Oral & Writing		
	classification techniques in the	 Project Supervision, 	Exams		
	development of innovative	 Self-Learning, 	 Reports, 		
	mechatronics and intelligent control	• Case Study,	 Survey, 		
	systems.	 Simulation Exercises, 	 Written Exam, 		
		 Independent Study, 	 Assignments 		
		 Analysis and Problem 	n		
		Solving,			
b2.	Solve complex domain problems	• Lectures,	Oral & Writing		
	using applied machine learning	 Project Supervision, 	Exams		
	methods, techniques and software	 Self-Learning, 	 Reports, 		
	tools.	 Case Study, 	 Survey, 		
		 Simulation Exercises, 	 Written Exam, 		
		 Independent Study, 	 Assignments 		
		 Analysis and Problem 	n		
		Solving,			
e	ee Alignment of Professional and Practical Skills CIL Os				
Professional and Practical Skills CILOs Teaching Strategies Assessment Strategies					
c1.	Develop intelligent learning	 Project Supervision. 	 Seminar Report. 		
	algorithm based on neural & deen	• Case Study.	 Assignments. 		
	learning mashing for integrating 8	 Simulation Exercises. 	 Written Research 		
	learning machine for integrating &	Independent Study.	Proposal.		
	constructing of intelligent	• Analysis and Problem			
	mechatronics systems.	Solving.			
c2	Use modern programming	Project Supervision	 Seminar Report 		
	languaga classification ragrossion	 Self-Learning. 	 Assignments. 		
	ranguage, classification, regression	 Case Study 	 Written Research 		
	and learning techniques for solving	 Simulation Exercises 	Proposal		
	mechatronics applications problems	Analysis and Problem	11000301.		
		Solving			
f	f Alignment of Transforebla (Conoral)				
11	Transferable (Concerch Shills CH Os	Taashing Stustaning	Assossment Strateria		
d1	Prenare term_courses works/ tasks and	Dissertation Defenses and	Written Research		
^{u1.}	their documents using anginoaring	Presentation	Proposal		
	methodologies and technical	 Independent Study 	I Toposal, ■ Assignments		
	writing and defend on them	 Independent Study, Presentation 	 Assignments, Dresentation 		
	writing and defend on them.	 Proinstorming 	 Fresentation, Written Demonstration 		
		 Dramstorning, Dragonting Descenting 	- written Keport.		
		 Presenting Researches. 	- 117 '4 P 1		
d2.	Conduct independently research that	 Dissertation Defenses and 	• Written Research		
			D 1		

and scholarship in the fields of	•	Independent Study,		Assignments,
intelligent mechatronics systems	•	Presentation,	-	Presentation,
based on machine/deep learning.	•	Brainstorming,	-	Written Report.
	•	Presenting Researches.		

Course Content						
22.	Theoretical Aspect					
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs	
1	Introduction	 Course Orientations: Aims, Objectives and CLOs, Artificial Intelligence: Advanced Topics, Applications. Programming Requirements in AI, An overview on classical Searching Techniques and Agent Systems, Mathematical Backgrounds in Algebra, Calculus and Probabilities. 	1	3	a1	
2	Neural Networks	 Neural Networks (NNs): Neural Function, Biology of Neuron & Brain Structure, Neuron Model: Logistic Unit, NN Layers, Feed-Forward Process, NN Vectorization, Multiple Output Units and NN Classification, Understanding Representations: Representing Boolean Functions like, AND, OR and NOT. Combining Representations: Create Non-Linear Functions like XOR, and Layering Representations, Neural Network Learning: Perceptron Learning Rule, Perceptron Convergence Theorem and Batch Perceptron. Learning in NN: Backpropagation, Cost Function, Optimizing the NN, Forward Propagation, Backpropagation: Gradient Computation, Training a Neural Network via Gradient Descent with Backprop and Implementation Details & Steps. 	3	9	a1, b1, b2, c1	
3	Supervised	 Introduction to Supervised Learning: Classification & Regression and Data 	3	9	a1, a2,	

	Learning (Classification & Regression)	 with Labels, Decision Trees Induction & DT Overfitting, Logistic Regression, Naïve Bayes Classifier. K-Nearest Neighbor & Instance- based Learning, Support Vector Machines (SVM) & Kernel Methods, Examples: Email Spam Detection & Speech Recognition. Linear Regression, Ridge Regression, Ordinary Least Squares Regression, Stepwise Regression, Examples: Stock Market Prediction & Rainfall Prediction. 			b1, b2, c2
4	Midterm Theoretical Exam	 Midterm Revision, Midterm Exam includes All Previous Topics 	1	3	a1, a2, b1, b2
5	Un-Supervised Learning	 Introduction to Un-Supervised Learning: Clustering, Association Analysis & Dimensionality Reduction and Data without Label, Clustering: K-means, K-median, Hierarchical Clustering and Expection Maximization, Examples: Identifying Fake News & Document Analysis. Association Analysis: APRIORI, Eclat and FP-Growth, Example: Market Basket Analysis. Dimensionality Reduction: Feature Extraction Principal Component Analysis, Feature Selection: Wrapper, Filter and Embedded Method, Example: Analysis of written texts and DNA microarray data. 	3	9	a2, b1, b2, c1, c2

6	Reinforcement Learning	 Introduction to Reinforcement Learning: Model-Free & Model-Based and State & Action, Model-Free: Q-Learning, Hybrid and Policy Optimization, Model-Based: Learn the Model and Given the Model. 	1	3	a2, b1 c1
7	Deep Learning	 Introduction to Deep Learning (DL): Wrong with Back-Propagation & Motivations, Belief Nets, Stochastic Binary Neurons, Restricted Boltzmann Machines, Training a Deep Belief Network, Greedy Learning, A Neural Network model of Digit Recognition, Fine-tuning with a Contrastive Version of the "wake- sleep" Algorithm, Convolutional Neural Network, LongShort-Term Memory (LSTM). 	1	3	a1, b1, b2, c1, c2
8	Evaluation	 Accuracy, Precision and recall, Squared Error, Likelihood, Posterior probability, Cost/Utility, Margin, Entropy, K-L Divergence. 	1	3	a1, b2
9	Case Studies & Course-Project Presentation	 Students Presents in an individual and in Groups their course Projects, Implementation and Paper Presentations works. 	1	3	a1, a2, b1, b2, c1, c2, d1, d2
10	Final Theoretical Exam	 ALL Topics 	1	3	a1, a2, b1, b2
	Number of Weeks	/and Contact Hours Per Semester	16	48	

23.	23. Practical Aspect					
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs		
1	• NONE					
2	•					
	Number of Weeks /and Contact Hours Per Semester					

24. Tutorial Aspect:

No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)
1	NONE			
2				
	Number of Weeks /and Units Per Semester			

• Teaching Strategies:

- Lectures,
- Seminars,
- Project Supervision,
- Self-Learning,
- Case Study,
- Simulation Exercises,
- Dissertation Defenses and Presentation,
- Independent Study,
- Analysis and Problem Solving,
- Brainstorming,
- Presenting Researches,
- Presentations,
- Group/Individual Projects and Studies,
- Active learning.

• Assessment Methods of the Course:

- Oral & Writing Exams
- Reports,
- Survey,
- Written Exam,
- Assignments
- Seminar Report,
- Written Research Proposal.

•	Tasks and Assignments:				
No	Assignments/ Tasks	Individual/ Group	Mark	Week Due	CILOs (symbols)
1	Assignments: Assignments 1: Neural Networks Programming in Python, Assignments 2: Supervised Learning Programming in Python, Assignments 3: Un-Supervised Learning Programming in Python, Assignments 4: Reinforcement Learning & Deep Learning Programming in Python.	Individual	10	4 th , 7 th , 11 th & 13 th	a1, a2, b1, b2, c1, c2, d1, d2
2	Course Project: Graduates work individually or within groups to search for practical and fields problems related to machine learning and solve them, preparing reports and defend on.	Individual / Group	15	From the 4 th to 15 th	a1, a2, b1, b2, c1, c2, d1, d2
3	Tasks: By searching Web, selecting research papers in the field of ML, implement that work done by the paper and presenting them	Individual / Group	10	From 4 th to 14 th	a1, a2, b1, b2, c1, c2, d1, d2
	Total Score		35	==	

•	Learning Assessment:						
No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment	CILOs		
1	Tasks and Assignments	4 th to 15 th	35	35%	a1, a2, b1, b2, c1, c2, d1, d2		
2	Quizzes	6 th & 12 th	5	5%	a1, a2, b1, b2		
3	Midterm Exam	8 th	20	20%	a1, a2, b1, b2		
4	Final Exam (Theoretical)	16 th	40	40%	a1, a2, b1, b2		
	Total		100	100%	===		

• Learning Resources :

21.Required Textbook(s) :

- 12. Shalev-Schwartz & Ben-David, 2014, "Understanding Machine Learning" Cambridge University Press.
- 13. Goodfellow, Bengio & Courville, 2016, "Deep Learning", MIT Press.

22 Essenti	al Defenences
	al Kelerences: Rishon 2007 "Pattern Decognition and Machina Learning" Springer
12, D	Jishop, 2007, Fattern Recognition and Wachine Learning, Springer.
13. F	Tastie, Tidsmirani & Friedman, 2009, The Elements of Statistical Learning: Data Minning,
1. 22 El	nierence", and Prediction, 2nd Edition. Springer.
<u>25.Electror</u> 13 S	IIC Materials and web Sites etc.
15. 5	some Courses on web.
<u>v</u>	vww.cs.mcgm.ca/~jpmeau/comp551
14. U	Jse https://cmt3.research.microsoft.com/ for project reports and peer-reviews.
15. S	Sample publication –See
p	paper: http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
ĥ	http://www.cs.mcgill.ca/~jpineau/publications.html
]	IEEE Publisher
	https://www.ieee.org
]	Elsevier Publisher
	https://www.elsevier.org
5	Science Direct Publisher
	https://www.Sciencedirect.com
16. F	Review basic algebra, probability, statistics:
<u>h</u>	ittp://www.cs.mcgill.ca/~dprecup/courses/ML/Materials/prob-review.pdf
<u>h</u>	ittp://www.cs.mcgill.ca/~dprecup/courses/ML/Materials/linalg-review.pdf
17. A	Applications: Stanford Autonomous Helicopter
<u>h</u>	<u>ittp://heli.stanford.edu/</u>
<u>h</u>	ittps://www.youtube.com/watch?v=VCdxqn0fcnE
A	Autonomous Cars: Nevada Autonomous Car
18. N	Novie of the network generating digits available at
	(www.cs.toronto/~hinton)
19. S	Software Tools: Many software packages are available, including broad ML libraries in

Java, C++, Python and R Languages.

الضوابط والسياسات المتبعة في المقرر . Course Policies	ix
، سبو، بسبو، بسبو، عديد عدي المسبوسة المعامة المقدر فيما يتعلق بالآتي: بعد الرجوع للوائح الحامعة بتم كتابة السباسة العامة للمقدر فيما يتعلق بالآتي:	
سياسة حضور الفعاليات التعليمية Class Attendance:	1
- يلتز م الطالب بحضور 75% من المحاضرات و بحرم في حال عدم الوفاء بذلك.	
ا - يُقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم	
اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
- يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات	
يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
 لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان 	
- إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية. الاتبيزية	
التعيينات والمشاريع Assignments & Projects:	4
- يحدد استاد المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيد التكليفات وتسليمها. اذا تأمر الطالب في تساير التعارفات عن الدو عد المحدد مورجين درجة التعارف الذي تأمر في تتوار مع	
- إذا تحر الطاب في تشليم التحليفات عن الموجد المحدد يحرم من درجه التحليف الذي تأخر في تشليمه. الفش Cheating:	5
	5
- في حال تبوت فيام الطالب بالغش في الامتحان التصفي أو النهائي تطبق عليه لاتحه سوون الطرب. - في حال ثبوت قبام الطالب بالغش أو النقل في التكليفات والمشاريع بحرم من الدرجة المخصصة للتكليف.	
الانتحال Plagiarism:	6
– في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك	
سیاسات آخری Other policies:	7
 أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ 	

Academic Year: 2021/2022

Course Plan (Syllabus): Advanced Artificial Intelligence

• Information about Faculty Member Responsible for the Course:

Name	Farouk Al-Fahaidy	0	Office Hours					
Location &Telephone No.	777909815	SAT	SUN	MON	TUE	WED	THU	
E-mail	farouqakh@gmail.com							

	 General information about the course: 					
	Course Title	Advanced Artificial Intelligence				
2.	Course Code and Number		MTE562			
		Credit Hours Total			Total	
3.	Credit Hours	Lecture Practical Seminar/Tutorial		Totai		
		3			3	
4.	Study Level and Semester	ELEC				
5.	Pre-requisites					
6.	Co –requisite					
7.	Program (s) in which the course is offered	Ms. of Science in Mechatronics Engineering Program				
8.	Language of teaching the course	English				
9.	Location of teaching the course	Me	chatronics De	epartment Classroon	ns	

• Course Description:

This course provides deep understanding of advanced topics in artificial intelligence and machine learning. Applied Machine learning has increasing growth and applications in a variety of environments such as, Web searching engines, Computational biology, Finance, E-commerce, Space exploration, Robotics & Intelligent Control, Information extraction, and Social networks. Course covers: an overview on AI: Agents & searching, Neural Networks, Supervised learning, Unsupervised learning, Reinforcement, Deep learning and Evaluation. Through case studies and course project works, graduates develop their problemsolving, intelligent systems' development, and programming skills in the field of machine learning by presenting solutions to variant real-time applications issues and problems.

• Course Intended Learning Outcomes (CILOs):

Upon successful completion of the **Advanced Artificial Intelligence** course, graduate students will be able to:

- a1 Demonstrate deep understanding of advanced AI concepts, applied mathematics and learning & classification techniques related to the field of neural and deep learning machines.
- a2 Explain supervised, unsupervised and reinforcement learning methods, and their issues & applications in different mechatronics systems.
- b1 Apply appropriate learning & classification techniques in the development of innovative mechatronics and intelligent control systems.
- b2- Solve complex domain problems using applied machine learning methods, techniques and software tools.
- c1- Develop intelligent learning algorithm based on neural & deep learning machine for integrating & constructing of intelligent mechatronics systems.
- c2- Use modern programming language, classification, regression and learning techniques for solving mechatronics applications problems
- d1- Prepare term-courses works/ tasks and their documents using engineering methodologies and technical writing and defend on them.
- d2- Conduct independently research that advances and extends knowledge and scholarship in the fields of intelligent mechatronics systems based on machine/deep learning.

•	Course Content					
25.	25. Theoretical Aspect					
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours		
1	Introduction	 Course Orientations: Aims, Objectives and CLOs, Artificial Intelligence: Advanced Topics, Applications. Programming Requirements in AI, An overview on classical Searching Techniques and Agent Systems, Mathematical Backgrounds in Algebra, Calculus and Probabilities. 	1	3		
2	Neural Networks	 Neural Networks (NNs): Neural Function, Biology of Neuron & Brain Structure, Neuron Model: Logistic Unit, NN Layers, Feed-Forward Process, NN Vectorization, Multiple Output Units and NN Classification, Understanding Representations: Representing Boolean Functions like, AND, OR and NOT. Combining Representations: Create Non- Linear Functions like XOR, and Layering 	3	9		

		Representations,		
		 Neural Network Learning: Perceptron Learning Rule, Perceptron Convergence 		
		 Learning in NN: Backpropagation, Cost 		
		Function, Optimizing the NN, Forward Propagation,		
		 Backpropagation Intuition, 		
		 Backpropagation: Gradient Computation, Training a Neural Network via 		
		Gradient Descent with Backprop and Implementation Details & Steps.		
		Introduction to Supervised Learning:		
		vith Labels,		
		 Decision Trees Induction & DT Overfitting. 		
		 Logistic Regression, 		
		Naïve Bayes Classifier.		
	Supervised	 K-Nearest Neighbor & Instance-based 		
3	Learning	Learning, Support Vector Machines (SVM) &	З	q
5	(Classification &	Kernel Methods,	, in the second s	
	Regression)	Examples: Email Spam Detection &		
		Speech Recognition.		
		 Linear Regression, 		
		 Ridge Regression, Ordinany Loost Sources Regression 		
		 Ordinary Least Squares Regression, Stenwise Regression 		
		 Examples: Stock Market Prediction & 		
		Rainfall Prediction.		
	Midterm	 Midterm Revision, 		
4	Theoretical	 Midterm Exam includes All Previous 	1	3
	Exam	Topics		
		 Introduction to Un-Supervised Learning: Clustering Association Analysis & 		
		Dimensionality Reduction and Data without		
		Label,		
-	Un-Supervised	 Clustering: K-means, K-median, Hierarchical Clustering and Expection Meximization 	2	
5	Learning	 Examples: Identifying Fake News & 	3	9
		Document Analysis.		
		Association Analysis: APRIORI, Eclat and FP-		
		Growth, Example: Market Packet Archiele		
		- Example: Warket Dasket Analysis.		

		 Dimensionality Reduction: Feature Extraction Principal Component Analysis, Feature Selection: Wrapper, Filter and Embedded Method, Example: Analysis of written texts and DNA microarray data. 			
6	Reinforcement Learning	 Introduction to Reinforcement Learning: Model-Free & Model-Based and State & Action, Model-Free: Q-Learning, Hybrid and Policy Optimization, Model-Based: Learn the Model and Given the Model. 	1	3	
7	Deep Learning	 Introduction to Deep Learning (DL): Wrong with Back-Propagation & Motivations, Belief Nets, Stochastic Binary Neurons, Restricted Boltzmann Machines, Training a Deep Belief Network, Greedy Learning, A Neural Network model of Digit Recognition, Fine-tuning with a Contrastive Version of the "wake-sleep" Algorithm, Convolutional Neural Network, Long Short-Term Memory (LSTM). 	1	3	
8	Evaluation	 Accuracy, Precision and recall, Squared Error, Likelihood, Posterior probability, Cost/Utility, Margin, Entropy, K-L Divergence. 	1	3	
9	Case Studies & Course-Project Presentation	 Students Presents in an individual and in Groups their course Projects, Implementation and Paper Presentations works. 	1	3	
10	Final Theoretical Exam	 ALL Topics 	1	3	
	Number of Weeks /and Contact Hours Per Semester1648				

12.Practical Aspect				
Order	Practical / Tutorials topics	Number of	Contact	Course ILOs

		Weeks	Hours	
1	 NONE 			
2	•			
3	•			
4	•			
5				
6	•			
	Number of Weeks /and Contact Hours Per Semester			

1	3. Training/ Tutorials/ Exercises Aspects:		
Order	Tutorials/ Exercises	Week Due	Contact Hours
1	NONE		
2	•		
3			
4			
5			
6	•		
7			
8	8		
9			
10			
11			
12	•		
13	•		
14			
Numb	er of Weeks /and Contact Hours Per Semester		

• Teaching Strategies:

- Lectures,
- Seminars,

- Project Supervision,
- Self-Learning,
- Case Study,
- Simulation Exercises,
- Dissertation Defenses and Presentation,
- Independent Study,
- Analysis and Problem Solving,
- Brainstorming,
- Presenting Researches,
- Presentations,
- Group/Individual Projects and Studies,
- Active learning.

• Assessment Methods of the Course:

- Oral & Writing Exams
- Reports,
- Survey,
- Written Exam,
- Assignments
- Seminar Report,
- Written Research Proposal.

	• Tasks and Assignments:			
No	Assignments	Individual /Groups	Mark	Week Due
1	Assignments:Assignments 1: Neural Networks Programming inPython,Assignments 2: Supervised Learning Programming inPython,Assignments 3: Un-Supervised LearningProgramming in Python,Assignments 4: Reinforcement Learning & DeepLearning Programming in Python.	Individual	10	4 th , 7 th , 11 th & 13 th
2	Course Project: Graduates work individually or within groups to search for practical and fields problems related to	Individual / Group	15	From the 4 th to 15 th

	machine learning and solve them, preparing reports and defend on.			
3	Tasks: By searching Web, selecting research papers in the field of ML, implement that work done by the paper and presenting them	Individual / Group	10	From 4 th to 14 th
	Total Score		35	

• Learning Assessment:

No	Assessment Method	Week Due	Mark	Proportion of Final Assessment %		
1	Tasks and Assignments	4 th to 15 th	35	35%		
2	Quizzes	6 th & 12 th	5	5%		
3	Midterm Exam	8 th	20	20%		
4	Final Exam (Theoretical)	16 th	40	40%		
	Total المجموع			100 %		

• Learning Resources:

12. Required Textbook(s) :

- 1. Shalev-Schwartz & Ben-David, 2014, "Understanding Machine Learning" Cambridge University Press.
- 2. Goodfellow, Bengio & Courville, 2016, "Deep Learning", MIT Press.

13. Essential References:

- 1. Bishop, 2007, "Pattern Recognition and Machine Learning", Springer.
- 2. Hastie, Tibshirani & Friedman, 2009, "The Elements of Statistical Learning: Data Mining, Inference", and Prediction, 2nd Edition. Springer.

14. Electronic Materials and Web Sites etc.

- 1. Some Courses on Web: www.cs.mcgill.ca/~jpineau/comp551
- 2. Use <u>https://cmt3.research.microsoft.com/</u> for project reports and peer-reviews.
- 3. Sample publication –See paper: <u>http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf</u> <u>http://www.cs.mcgill.ca/~jpineau/publications.html</u> IEEE Publisher

https://www.ieee.org

Elsevier Publisher

https://www.elsevier.org

Science Direct Publisher

https://www.Sciencedirect.com

4. Review basic algebra, probability, statistics: <u>http://www.cs.mcgill.ca/~dprecup/courses/ML/Materials/prob-review.pdf</u> http://www.cs.mcgill.ca/~dprecup/courses/ML/Materials/linalg-review.pdf

- 5. Applications: Stanford Autonomous Helicopter <u>http://heli.stanford.edu/</u> <u>https://www.youtube.com/watch?v=VCdxqn0fcnE</u> Autonomous Cars: Nevada Autonomous Car
- 6. Movie of the network generating digits available at (www.cs.toronto/~hinton)
- 7. Software Tools: Many software packages are available, including broad ML libraries in Java, C++, Python and R Languages.

الضوابط والسياسات المتبعة في المقرر Course Policies	.X
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:	1
سياسة حضور الفعاليات التعليمية Class Attendance <u>:</u>	1
 يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. 	
 يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم 	
اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
 يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات 	
يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
 لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان 	
- إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية <mark>.</mark>	
التعيينات والمشاريع Assignments & Projects:	4
 يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها. 	
- إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.	
الغش Cheating:	5
 في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شوون الطلاب. 	
- في حال تُبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.	
الانتحال Plagiarism:	6
– في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك	
سیاسات آخری Other policies <u>:</u>	7
 أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ 	

