Course Specification of: Advanced Digital signals processing

Course Code (CCE583)

I.	General Information About	the Cour	se:		
	Course Title:	dvanced	Digital sign	als processing	
	Course Code and Number:	CCE58	3 (ELEC)		
		Credit	Hours		Total
	Credit Hours:	ecture	Practical	eminar/Tutorial	
		3	-	-	3
	Study Level and Semester:	ELEC		•	•
	Pre-requisites (if any):	-			
	Co-requisites (if any):	-			
	Program (s) in which the course is	M. Sc. I	Program in C	Computer Engineerin	g &
	offered:	Control			
	Language of teaching the course:	Inglish			
	Study System:	Courses &	Thesis		
	Prepared By:	Assoc. Pro	of. Dr. Radwa	an M. AL Bouthigy	
	Reviewed by:	Assoc. Pro	of. Dr. Farou	k Al-Fahaidy	
	Date of Approval:				

I. Course Description:

This course provides advanced concepts on digital signals processing & systems as well as, advanced digital filters design and capabilities. With growth and advancements in the field of digital signal processing, devices around in real-time are able to communicate in a better way than one can imagine. Course covers; an overview on advanced digital signals processing systems, Digital Processing of Continuous-Time Signals, Advanced Digital signals processing Techniques, Efficient FIR Structures, Digital Filters and Multi-Rate Digital Signal Processing. Throughout course projects & case study works, graduates develop their skills in DSP systems design and implementation.

II. Course Intended Learning Outcomes (CILOs):

Upon successful completion of the Advanced Digital Signals Processing Course, the graduates will be able to:

Demonstrate deep understanding of the theory and practice of digital signal processing system operation and design.

Explain in detail the different advanced digital signal processing techniques and the challenges of Reconstruction of an ideally sampled signal by ideal lowpass filtering and continuous-time signal using ideal interpolation.

Analyze a digital system both as whole and in its included parts, for understanding how these parts interact in performing the functionality and properties of the system.

Progress new ideas to improve the scientific literature in the digital filter system.

Develop an integrated development environment based on digital signal system using MATLAB Simulink tools.

Diagnose other areas of knowledge jointly with other professions to arrive at a solution for complex problem related to digital systems processing.

Establish leadership, analytical and problem-solving skills appropriate to the digital signal processing sector.

Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the field of digital signal systems design and integration.

K. Alignment of Course Intended Learning Outcomes (CILOs) to Program Intended Learning Outcomes (PILOs)

CIL	Os	PILOs
ı. Know	ledge and Understanding: Upon	J. Knowledge and Understanding: Upon
succes	sful completion of the Advanced Digital	successful completion of the M. Sc. In
Signal	s Processing Course, the graduates will be	Computer Engineering & Control
able to):	Program , the graduates will be able to:
	Demonstrate deep understanding of the	Demonstrate deep understanding of computer
	theory and practice of digital signal	engineering and control as well as
	processing system operation and design.	knowledge of applied mathematics and
		engineering science to the field of
		computing and intelligent control.
	Explain in detail the different advanced	A3. Explain in-depth the principles of
	digital signal processing techniques and	sustainable design and development of
	the challenges of Reconstruction of an	computing products, standards and protocols
	ideally sampled signal by ideal lowpass	and intelligent control systems.
	filtering and continuous-time signal	
	using ideal interpolation.	
r. Cogni	tive/ Intellectual Skills: Upon successful	'. Cognitive/ Intellectual Skills: Upon
compl	etion of the Advanced Digital Signals	successful completion of the M. Sc. In
Proces	sing Course, the graduates will be able to:	Computer Engineering & Control
		Program, the graduates will be able to:
	Analyze a digital system both as whole and	1. Evaluate, select and apply appropriate
	in its included parts, for understanding how	principles, methodologies, techniques, tools
	these parts interact in performing the	and packages to the analysis, specification,
	functionality and properties of the system.	development and evaluation of computing
		and engineering systems.
	Progress new ideas to improve the	3. Propose computing system, component, or
	scientific literature in the digital filter	process to meet desired needs within
	system.	realistic constraints.
v.Profes	ssional and Practical Skills: Upon	V. Professional and Practical Skills:
succes	sful completion of the Advanced Digital	Upon successful completion of the M. Sc. In
Signal	s Processing Course, the graduates will be	Computer Engineering & Control

ablata	Drogram the graduated will be able to:
	Program , the graduates will be able to:
Develop an integrated development	1. Develop, configure, upgrade, and/or write
environment based on digital signal	computer software/program to solve
system using MATLAB Simulink too	ols. computing and control problems.
Diagnose other areas of knowledge	2. Use advanced methodology and skills to
jointly with other professions to arriv	e at the formulation and practice of computer
a solution for complex problem relate	ed to science, engineering and control systems.
digital systems processing.	
. Transferable Skills: Upon successful	. Transferable Skills: Upon successful
completion of the Advanced Digital Signals	completion of the M. Sc. In Computer
Processing Course, the graduates will be able	to: Engineering & Control Program, the
	graduates will be able to:
Establish leadership, analytical and	I. Prepare complete thesis and reports, present
problem-solving skills appropriate to	the ideas clearly and defend them.
digital signal processing sector.	
Balance professional and ethical	Balance professional and ethical
responsibilities including contemporary	responsibilities including contemporary
issues and environmental awareness in the	ne issues and environmental awareness.
field of digital signal processing systems	5
design and integration.	

. Alig	gnment of CILOs to Teaching a	and Assessment S	Strategies
Know	ledge and Understanding CILOs	Teaching Strategies	Assessment Strategies
a1.	Demonstrate deep understanding of the theory and practice of digital signal processing system operation and design.	Lectures, Self-Learning Problems/Studies,	Written Exam, Assignments.
	Explain in detail the different advanced digital signal processing techniques and the challenges of Reconstruction of an ideally sampled	Lectures, Active learning.	Written Exam, Assignments

	signal by ideal lowpass filtering and		
	signal by ideal lowpass intering and		
	continuous-time signal using ideal		
	interpolation.		
Alig	ment of Intellectual Skills CILOs:		
Intelle	ectual Skills CILOs	Teaching Strategies	Assessment
			Strategies
b1.	Analyze a digital system both as whole	Lectures,	Survey,
	and in its included parts, for	Independent Study,	Written Exam,
	understanding how these parts interact in	Brainstorming.	Assignments
	performing the functionality and		
	properties of the system.	-	
b2.	Progress new ideas to improve the	Lectures,	
	scientific literature in the digital filter	Project Supervision,	Written Exam
	system.	Self-Learning,	Assignments
		Brainstorming,	Assignments.
Align	iment of Professional and Practical Sk	ills CILOs:	
Profe	ssional and Practical Skills CILOs	Teaching Strategies	Assessment Strategies
	Develop an integrated development	Case Study,	
	environment based on digital signal	Simulation Exercises,	Written Pesseerah
	system using MATLAB Simulink	Brainstorming,	Proposal
	tools.	Presentations,	Thesis and
			Publication
	Diagnosa other gross of knowledge	Self-Learning	Written Research
	bignose other areas of knowledge	Case Study	Proposal
	Jointry with other professions to	Simulation Exercises	Thesis and
	arrive at a solution for complex	Brainstorming.	Publication.
	problem related to digital systems	Presentations.	
	processing.	,	
Alig	ment of Transferable (General) Skills	CILOs:	
Trans	ferable (General) Skills CILOs	Teaching Strategies	Assessment Strategies
1	blish leadership, analytical and	Independent Study,	Written Exam,
	problem-solving skills appropriate to	Presentation,	Written Report.
	the digital signal processing sector.	Publish Research Papers.	
	ance professional and ethical	Dissertation Defenses and	Written Exam,
	responsibilities including contemporary	Presentation,	Assignments,
	issues and environmental awareness in	Independent Study,	Written Report.

the field of digital signal processingPresentation,systems design and integration.Brainstorming,Publish Research Papers.	 		
systems design and integration.Brainstorming,Publish Research Papers.	the field of digital signal processing	Presentation,	
Publish Research Papers.	systems design and integration.	Brainstorming,	
		Publish Research Papers.	

I. Course Content Signals Systems Order Topic List / Units Sub -Topics List Number of Weeks Course ILOs Signals, Systems and Signal Forcessing Basic Elements of a Juits Forcessing Basic Elements of a Digital Signal Processing System 1 3 a1, a2 Introduction Analog signal processing Juits and Digital signal processing 1 3 a1, a2					
. Theoret	ical Aspect				
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs
1	Introduction	Signals, Systems and Signal Processing Basic Elements of a Digital Signal Processing System Analog signal processing Digital signal processing Advantages and disadvantages of digital processing	1	3	a1, a2

		compared to analog processing Application A simple smoothing filter Vector norm computation			
2	Digital Processing of Continuous- Time Signals	Refined digital signal processing system Generation of discrete-time signals from continuous-time signals Ideal sampling Non-ideal sampling Sampling performed by a sample-and-hold (S/H)	3	9	a2, b1, b2, c2, d1

Reconstruction of		
an ideally sampled		
signal by ideal		
lowpass filtering		
Reconstruction of a		
continuous-time		
signal using ideal		
interpolation		
Reconstruction with		
Sample-and-Hold		
Circuits		
Signal reconstruction		
Analysis		
Spectral		
interpretation of the		
reconstruction		
process		
Quantization		
Pasia		
Basics		
Quantization		
midtread quantizer		
with L=8		
Coding		
Commonly used		
bipolar codes		
Quantization error		
Analog-to-Digital		
Converter		
Realizations		
Flash AD converters		

	r				
		Serial AD converters			
		Possible realization			
		Circuit analysis			
		The DFT & FFT			
		Digital Signals			
		Processing			
		Technique:			
		Definition &			
		Comparison based			
		on Computation			
		Complexity			
	Advanced	Linear and Circular			
2	Digital	Convolution			-1
3	Signal	Basic definitions of	3	9	a1, D1, D2
	Techniques	both types of			
	Teeningues	convolutions			
		The DFT and it's			
		relation to circular			
		convolution			
		Linear Filtering in			
		the DFT Domain			
		DFT and linear			

convolution for		
finite-length		
sequences		
DFT and linear		
convolution for		
infinite or long		
sequences		
Frequency analysis		
of stationary signals		
– Leakage effect		
Frequency analysis		
of stationary signals		
– Windowing		
Frequency analysis		
of stationary signals		
– Comparison of		
window sequence		
Fast Computation of		
the DFT: The FFT		
The Goertzel		
Algorithm		
Radix-2 approach		
(decimation in time)		
Radix-2-decimation-		
in-time FFT		
algorithms		
FFT alternatives		
Convolution of a		
finite and an infinite		
sequence		
The state of the state		
i ransformation of		

Real-Valued		
Sequences		
DFT of two real		
sequences		
DFT of a 2M-point		
real sequence		
The Application of		
the 2-d & 3-d		
DFT/FFT Digital		
Signals Processing		
of multi-		
dimensional objects		
like images, sounds		
and videos,		
The Discrete Cosine		
Transformation		
(DCT) version of DFT		
and the Discrete		
Sine Transformation		
(DST) version of		
DFT,		
The Wavelet		
Processing:		
definition and		
properties of		
Wavelet processing,		

		Fine & Details components of Wavelet and its Applications & Performance.			
4	Mid – term Exam	All Previous Topics	1	3	a1, a2, b1, b2
5	Efficient FIR Structures	Derivation of Single output of an FIR filter Two outputs of an FIR filter (block processing) "Even" and "odd" signal and filter vectors Basic structure Efficient structure Reduction in computational complexity (for	1	3	a1, b1, b2

	r				
		large filter orders). Fixed-Point DSP			
6	Digital Filters (FIR & IIR) Structures and Design	HardwareGeneral RemarksStructures for FIRsystemsDirect formstructure: Tapped-delay or transversalfilterCascade-formstructuresStructures for IIRsystems: Direct,Cascade, Paralleland Cascade-Parallel Forms.CoefficientQuantization andRounding Effects.Errors resultingfrom rounding andtruncationNumerical overflowCoefficientquantization errorsEffect of	3	9	a1,a2,b1,b2,d1

	quantization of		
	coefficients		
	Coefficient		
	quantization errors		
	Zero-input limit		
	cycles		
	Design of FIR Filters		
	General remarks		
	(IIR and FIR filters)		
	Linear-phase filters.		
	Design of IIR Filters		
	Basics of IIR-Filter		
	Design		
	Filter design by		
	impulse invariance		
	Bilinear transform		
	Characteristics of		
	commonly used		
	analog filters		

7 Multi-Rate Digital Signal Processing	Basic IdeasBasic Multi-RateOperationSampling ratereductionSpectrum afterdownsamplingFrequency responseafter downsamplingDecimation andaliasingMore generalapproach: samplingrate reduction withphase offsetSampling rateincreaseInterpolationPolyphasedecompositionNyquist-FiltersStructures forDecimation andInterpolationFIR direct formrealization forHR direct formFIR direct form <trtr< th=""><th>2</th><th>6</th><th>b1,b2,c1,c2,d1,d2</th></trtr<>	2	6	b1,b2,c1,c2,d1,d2
---	---	---	---	-------------------

		interpolation			
		Decimation and Interpolation with Polyphase Filters			
		Decimation Interpolation Non-Integer			
		Sampling Rate Conversion			
8	Case Studies	Students Presents in an individual and in Groups their course Projects, Simulink Implementation and Paper	1	3	a1,a2,b1,b2,c1,c2,d1,d2
	E: 1E	Presentations works. All Topics			
	Final Exam		1	3	a1,a2,b1,b2

Number of Weeks /and Contact Hours Per Semester	16	48	

. Practic	Practical Aspect NA						
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs			
1	None						
Number o	of Weeks /and Contact Hours Per Semester						

. Tutor	Tutorial Aspect:						
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)			
1	None						
Num	ber of Weeks /and Units Per Semester						

I. Teaching Strategies:	
ectures,	
lf-Learning,	
ase Study,	
mulation Exercises,	
ainstorming,	
esentations,	

II. Assessment Methods of the Course:

ritten Exam,

Б

ssignments, including reports and presentations

ritten Research Proposal.

V. Tasks and Assignments:							
No	Assignments/ Tasks	Individual/ Group	Mark	Week Due	CILOs (symbols)		
1	Assignments: Design and implementation of the DFT/FFT realization using MATLAB tools Design and implementation of robust" filter using MATLAB tools ndividual search assignments with following presentations	Individual	14	5 th , 10 th , & 12 th	a1, a2, b1, b2, c1, c2, d1, d2		
2	Mini/Major Project: Students works and submit their individual & group Projects using Web searching, High-Level Programming and simulation to design and implement DSP applications.	Individual/ Group	16	From the 4 th to 14 th	a1, a2, b1, b2, c1, c2, d1, d2		
3	Project presentation & Case studies	Individual/ Group	10	Work from the 4 th	a2, b1, b2, c1, c2, d1, d2		

		to 14 th weeks	
Total Score	40	==	

V. Learning Assessment:							
No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment	CILOs		
1	Assignments	4 th to 14 th	40	40%	a1, a2, b1, b2, c1, c2,		
3	Midterm Exam	8 th	20	20%	a1, a2, b1, b2		
4	Final Exam (Theoretical)	16 th	40	40%	a1, a2, b1, b2		
	Total		100	100%	===		

I. Learning Resources:

6.Required Textbook(s):

J. G. Proakis, D. G. Manolakis, 2006, Digital Signal Processing: Principles, Algorithms, and

Applications, Pearson, 4th edition

Saeed V. Vaseghi, 2009, Advanced Digital Signal Processing and noise reduction, Algorithms, and Applications, Willy, 4th edition

7.Essential References:

S. K. Mitra, 2000, Digital Signal Processing: A Computer-Based Approach, McGraw Hill Higher Education, 2nd edition

A. V. Oppenheim, R. W. Schafer, 1999, Discrete-Time Signal Processing, Prentice Hall, 2nd edition

M. H. Hayes, 1996, Statistical Signal Processing and Modeling, John Wiley and Sons.

8. Electronic Materials and Web Sites etc.

www.sussex.com/

www.ep.jhu.edu./

http://www.handbook.unsw.edu.au.com/

http://med.neduet.edu.pk

Journal :

IEEE Publisher

https://www.ieee.org

Elsevier Publisher

https://www.elsevier.org

Science Direct Publisher

https://www.Sciencedirect.com

Course Policies الضوابط والسياسات المتبعة في المقرر

بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:

Class Attendance:سياسة حضور الفعاليات التعليمية

يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك.

يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم اقرار الحرمان من مجلس القسم. 1

2

3

4

5

6

7

Tardy: الحضور المتأخر

يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات

يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.

فوابط الامتحان Exam Attendance/Punctuality:

لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان

إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية.

Assignments & Projects: التعيينات والمشاريع

يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها. إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.

:Cheatingالغش

في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب.

في حال ثبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.

:Plagiarism الانتحال

في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك

Other policies: سياسات أخرى

أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ

<u>Course Plan (Syllabus</u>): Advanced Digital signals processing

Information a	ormation about Faculty Member Responsible for the Course:						
Name	Assoc. Prof. Dr. Radwan M. AL Bouthigy	Office Hours					
Location &Telephone No.	775284933	SAT	SUN	MON	TUE	WED	THU
E-mail	<u>radwan006@yahoo.com</u>						

6	General information about	the cours	e:		
.	Course Title	Advanced	Digital sign	als processing	
í.	Course Code and Number	CCE583 (ELEC)		
		Credit Ho	urs		Total
	Credit Hours	lecture	Practical	eminar/Tutorial	
		3	-	-	3
	Study Level and Semester	ELEC			
).	Pre-requisites				
•	Co –requisite	-			
	Program (s) in which the	ASc. in Prog	ram in Comp	outer Engineering & Co	ontrol
ľ	course is offered				
	Language of teaching the	Inglish			
	course				
	Location of teaching the course	Faculty of	Engineering	g	

Course Description:

This course provides advanced concepts on digital signals processing & systems as well as, advanced digital filters design and capabilities. With growth and advancements in the field of digital signal processing, devices around in real-time are able to communicate in a better way than one can imagine. Course covers; an overview on advanced digital signals processing systems, Digital Processing of Continuous-Time Signals, Advanced Digital signals processing Techniques, Efficient FIR Structures, Digital Filters and Multi-Rate Digital Signal Processing. Throughout course projects & case study works, graduates develop their skills in DSP systems design and implementation.

Course Intended Learning Outcomes (CILOs):

Upon successful completion of the Advanced Digital Signals Processing Course, the graduate students will be able to:

Demonstrate deep understanding of the theory and practice of digital signal processing system operation and design.

Explain in detail the different advanced digital signal processing techniques and the challenges of Reconstruction of an ideally sampled signal by ideal lowpass filtering and continuous-time signal using ideal interpolation.

Analyze a digital system both as whole and in its included parts, for understanding how these parts interact in performing the functionality and properties of the system.

Progress new ideas to improve the scientific literature in the digital filter system.

Develop an integrated development environment based on digital signal system using MATLAB Simulink tools.

Diagnose other areas of knowledge jointly with other professions to arrive at a solution for complex problem related to digital systems processing.

Establish leadership, analytical and problem-solving skills appropriate to the digital signal

processing sector.

d2. Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the field of digital signal systems design and integration.

Cours	Course Content				
. Theore	ical Aspect				
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	
1	Introduction	Signals, Systems and Signal Processing Basic Elements of a Digital Signal Processing System Analog signal processing Digital signal processing Advantages and disadvantages of digital processing compared to analog processing Application A simple smoothing filter Vector norm computation	1	3	
2	Digital Processing of Continuous- Time Signals	Refined digital signal processing system Generation of discrete-time signals from continuous-time signals Ideal sampling Non-ideal sampling Sampling performed by a sample-	3	9	

and-hold (S/H)	
Deconstruction of an ideally compled	
signal by ideal lowpass filtering	
Reconstruction of a continuous-time	
signal using ideal interpolation	
Reconstruction with Sample-and-	
Hold Circuits	
Cignal reconstruction	
spectral interpretation of the	
Quantization	
Basics	
Quantization characteristic for a	
midtread quantizer with L=8	
Coding	
Commonly used bipolar codes	
Quantization error	
Analog-to-Digital Converter	
Realizations	
Flash AD converters	
Serial AD converters	
Possible realization	
Circuit exclusio	
Circuit analysis	

3 Advanced Digital 3 Advanced Digital 3 Advanced Digital 3 Signal Processing Techniques	
3 Advanced Digital 3 Advanced Digital	
3 Advanced Digital 3 Advanced Digital Signal Processing Frequency analysis of stationary 3 Signal Processing Techniques Frequency analysis of stationary	
3 Advanced Digital 3 Advanced Digital Signal Processing Frequency analysis of stationary 3 Complexity Linear and Circular Convolution Basic definitions of both types of convolutions The DFT and it's relation to circular convolution Linear Filtering in the DFT Domain DFT and linear convolution for finite- length sequences DFT and linear convolution for infinite or long sequences Signal Processing Techniques	
3 Advanced Digital Signal Processing Trequency analysis of stationary 3 Advanced Digital Signal Processing Frequency analysis of stationary 3 Advanced Digital	
3Advanced Digital Signal Processing TechniquesBasic definitions of both types of convolutions The DFT and it's relation to circular convolution3Advanced Digital Signal Processing TechniquesDFT and linear convolution for infinite or long sequences Frequency analysis of stationary signals – Leakage effect39	
3Advanced Digital Signal Processing TechniquesConvolutions The DFT and it's relation to circular convolution1Linear Filtering in the DFT Domain0DFT and linear convolution for finite- length sequences DFT and linear convolution for infinite or long sequences Frequency analysis of stationary signals – Leakage effect	
3The DFT and it's relation to circular convolutionLinear Filtering in the DFT DomainDFT and linear convolution for finite- length sequencesDFT and linear convolution for infinite or long sequencesSignal Processing TechniquesFrequency analysis of stationary signals – Leakage effect	
3ConvolutionJackLinear Filtering in the DFT DomainDFT and linear convolution for finite- length sequencesDFT and linear convolution for infinite or long sequencesJFT and linear convolution for infinite or long sequencesFrequency analysis of stationary signals – Leakage effect	
3 Advanced Digital Signal Processing Techniques DFT and linear convolution for length sequences DFT and linear convolution for infinite or long sequences Frequency analysis of stationary signals – Leakage effect 3 3 9	
3Linear Filtering in the DFT DomainJerrDFT and linear convolution for finite- length sequencesJerrDFT and linear convolution for finite- length sequencesJerrDFT and linear convolution for infinite or long sequencesJerrSignal Processing TechniquesJerrFrequency analysis of stationary signals – Leakage effect	
3DFT and linear convolution for finite- length sequences3Advanced Digital Signal Processing Techniques3Signal Processing signals – Leakage effect	
3Iength sequencesAdvanced DigitalDFT and linear convolution forinfinite or long sequencesSignal ProcessingTechniquessignals – Leakage effect	
3DFT and linear convolution for infinite or long sequences Frequency analysis of stationary signals – Leakage effect39	
Advanced Digital Signal Processing Techniquesinfinite or long sequences Frequency analysis of stationary signals – Leakage effect39	
3Signal Processing TechniquesFrequency analysis of stationary signals – Leakage effect39	
Techniques signals – Leakage effect	9
Frequency analysis of stationary	
signals – Windowing	
Frequency analysis of stationary	
signals – Comparison of window	
sequence	
Fast Computation of the DFT: The FFT	
The Goertzel Algorithm	
Radix-2 approach (decimation in	
time)	
Radix-2-decimation-in-time FFT	
algorithms	
FFT alternatives	
Convolution of a finite and an infinite	

		sequence		
		Transformation of Real-Valued		
		Sequences		
		DFT of two real sequences		
		DFT of a 2M-point real sequence		
		The Application of the 2-d & 3-d		
		DFT/FFT Digital Signals Processing of		
		multi-dimensional objects like		
		images, sounds and videos.		
		The Discrete Cosine Transformation		
		(DCT) version of DFT and the Discrete		
		Sine Transformation (DST) version of		
		DFT.		
		The Wavelet Processing: definition		
		and properties of Wavelet		
		nrocessing Fine & Details		
		components of Waylot and its		
		Applications & Devformence		
		Applications & Performance.		
4	Mid – term Exam	All Previous Topics	1	3
		Derivation of		
		Single output of an FIR filter		
		Two outputs of an FIR filter (block		
5	Efficient FIR	processing)	1	3
5	Structures	"Even" and "odd" signal and filter	-	
		vectors		
		Basic structure		
		Efficient structure		

		Reduction in computational		
		complexity (for large filter orders).		
		Fixed-Point DSP Hardware		
		General Remarks		
		Structures for FIR systems		
		Direct form structure: Tapped-delay		
		or transversal filter		
		Cascade-form structures		
		Structures for IIR systems: Direct,		
		Cascade, Parallel and Cascade-		
		Parallel Forms.		
		Coefficient Quantization and		
	Digital Filters	Rounding Effects.		
6	(FIR & IIR)	Errors resulting from rounding and	3	9
	Structures and	truncation		
	Design	Numerical overflow		
		Coefficient quantization errors		
		Effect of quantization of coefficients		
		Coefficient quantization errors		
		Zero-input limit cycles		
		Design of FIR Filters		
		General remarks (IIR and FIR filters)		
		Linear-phase filters.		
		Design of IIR Filters		
		Basics of IIR-Filter Design		

		Filter design by impulse invariance		
		Bilinear transform		
		Characteristics of commonly used		
		analog filters		
		Rasic Ideas		
		Basic Nulti Pata Operation		
		Semulia rate reduction		
		Sampling rate reduction		
		Spectrum after downsampling		
		Frequency response after		
		downsampling		
		Decimation and aliasing		
		More general approach: sampling		
		rate reduction with phase offset		
		Sampling rate increase		
		Interpolation		
		Polyphase decomposition		
7	Multi-Rate Digital	Nyquist-Filters	2	6
	Signal Processing			
		Structures for Decimation and		
		Interpolation		
		FIR direct form realization for		
		decimation		
		FIR direct form realization for		
		interpolation		
		Decimation and Interpolation with		
		Polyphase Filters		
		Decimation		
		Interpolation		

		Non-Integer Sampling Rate Conversion		
8	Case Studies	Students Presents in an individual and in Groups their course Projects, Simulink Implementation and Paper Presentations works.	1	3
	Final Exam	All Topics	1	3
Number	Number of Weeks /and Contact Hours Per Semester		16	48

Practi	Practical Aspect				
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs	
1	None				
Number o	Number of Weeks /and Contact Hours Per Semester				

Training/ Tutorials/ Exercises Aspects:				
Order	Tutorials/ Exercises	Week Due	Contact Hours	
1	None			
Number of Weeks /and Contact Hours Per Semester				

Teaching Strategies:

ctures,

lf-Learning,

ase Study,

mulation Exercises,

ainstorming,

esentations,

roup/Individual Projects and Studies,

Assessment Methods of the Course:

ritten Exam,

ssignments, including reports and presentations

ritten Research Proposal.

.Tasks and Assignments:				
No	Assignments	Individual /Groups	Mark	Week Due
1	Assignments: esign and implementation of the DFT/FFT	Individual	14	5 th , 10 th , & 12 th

	realization using MATLAB tools			
	esign and implementation of robust" filter using MATLAB tools			
	Assignment 3: Individual search assignments with following presentations			
2	Mini/Major Project:			
	Students works and submit their individual & group Projects using Web searching, High-Level Programming and simulation to design and implement DSP applications.	Individual/ Group	16	From the 4 th to 14 th
3	Project presentation & Case studies	Individual/ Group	10	Work from the 4 th to 14 th weeks
	Total Score			

Learning Assessment:							
No	Assessment Method	Week Due	Mark	Proportion of Final Assessment %			
1	Assignments	4 th to 14 th	40	40%			
3	Midterm Exam	8 th	20	20%			
4	Final Exam (Theoretical)	16 th	40	40%			
	Total			100 %			

Learning Resources:

. Required Textbook(s):

J. G. Proakis, D. G. Manolakis, 2006, Digital Signal Processing: Principles, Algorithms, and Applications, Pearson, 4th edition

Saeed V. Vaseghi, Advanced Digital Signal Processing and noise reduction, Algorithms, and

Applications, Willy, 2009, 4th edition

Essential References:

S. K. Mitra: Digital Signal Processing: A Computer-Based Approach, McGraw Hill Higher Education, 2000, 2nd edition

A. V. Oppenheim, R. W. Schafer: Discrete-Time Signal Processing, Prentice Hall, 1999, 2nd edition

M. H. Hayes: Statistical Signal Processing and Modeling, John Wiley and Sons, 1996

Electronic Materials and Web Sites etc.

www.sussex.com/

www.ep.jhu.edu./

http://www.handbook.unsw.edu.au.com/

http://med.neduet.edu.pk

Journal :

IEEE Publisher

https://www.ieee.org

Elsevier Publisher

https://www.elsevier.org

Science Direct Publisher

https://www.Sciencedirect.com

م المقرر	المتبعة فر	والسياسات	Courseالضوابط	Policies
----------	------------	-----------	---------------	----------

بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:

Class Attendance: سياسة حضور الفعاليات التعليمية

يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك.

يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم

1

2

اقرار الحرمان من مجلس القسم.

:Tardyالحضور المتأخر

يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات

يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
Exam Attendance/Punctuality:ضوابط الامتحان	3
لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان -	
إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية	
Assignments & Projects: التعيينات والمشاريع	4
يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها.	
إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه	
Cheating:	5
في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب.	
في حال ثبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.	
Plagiarism: الانتحال	6
في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك -	
Other policies: سياسات أخرى	7
أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ -	

