Course Specification of: Advanced Embedded Systems Design Course Code (MTE531)

•	General Information About the	e Course	2:			
19.	Course Title:	1	Advanced Em	bedded Systems Design		
50.	Course Code and Number:	MTE531				
			Credit	Hours	Total	
5 1.	Credit Hours:	Lecture	Practical	Seminar/Tutorial	Totai	
		3			3	
52 .	Study Level and Semester:	2nd Semester				
53.	Pre-requisites (if any):					
54 .	Co-requisites (if any):					
55.	Program (s) in which the course is offered:	M. Sc. in	Mechatronic	es Engineering Progra	ams	
5 6.	Language of teaching the course:	English				
57 .	Study System:	Courses &	t Thesis			
5 8.	Prepared By:	Assoc. Prof. Dr. Farouk Al-Fahaidy				
5 9.	Reviewed by:	Assoc. Pro	Assoc. Prof. Dr. Radwan M. AL Bouthigy			
0 .	Date of Approval:					

• Course Description:

This course provides advanced concepts on Embedded systems design, advanced microcontrollers architecture and capabilities, as well as, System on Chip (SoC) design. The future of embedded systems and IoT lies in the advancement of technologies that enable faster communication with high interwoven connections between different devices. Course covers, an overview on advanced 32-bit ARM microcontrollers, Embedded System Design concepts & Project Management, ESs Firmware/software, ESs Digital Signal Processing and ESs Communications. Throughout course projects & case study works, students develop their skills in ESs design and implementation.

• Course Intended Learning Outcomes (CILOs):

Upon successful completion of Advanced Embedded Systems Design Course, the graduates will be able to:

- a1- Discuss hardware/software partitioning in system design and the strategies for embedded firmware design and development.
- a2 Explain architectural features of 32-bit ARM Microcontrollers, as well as, their instruction sets, programming and applications in sustainable design and development of embedded Systems.
- **b1** Analyze a system both as whole and in the included parts, for understanding how these parts interact in the functionality and properties of the system.

- **b2-** Suggest innovative embedded systems for solving practice problems, related to SoC designing and implementation considering their constituting elements limits.
- c1- Develop an integrated development environment in embedded system based on software and electronical hardware tools.
- c2- Apply formal method, testing, verification, validation and simulation techniques and tools in order to engineer reliable and safe embedded systems.
- d1- Establish a high level of skills in writing, presenting and defending research/project activities through course works.
- d2- Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the field of embedded systems design and integration.

	lignment of Course Intended rogram Intended Learning Outco	Learning Outcomes (CILOs) to omes (PILOs)		
	CILOs	PILOs		
succ Em l	wledge and Understanding: Upon ressful completion of the Advanced bedded Systems Design Course, the luates will be able to:	U. Knowledge and Understanding: Upon successful completion of the MSc. In Mechatronics Engineering Program, the graduates will be able to:		
a1.	Discuss hardware/software partitioning in system design and the strategies for embedded firmware design and development.	strategies for of applied mathematics in		
a2.	Explain architectural features of 32-bit ARM Microcontrollers, as well as, their instruction sets, programming and applications in sustainable design and development of embedded Systems.	A3. Explain in-depth the principles of sustainable design and development of Mechatronics engineering.		
com	pletion of the Advanced Embedded tems Design Course, the graduates will be to:	V. Cognitive/ Intellectual Skills: Upon successful completion of the MSc. In Mechatronics Engineering Program, the graduates will be able to:		
b1.	Analyze a system both as whole and in the included parts, for understanding how these parts interact in the functionality and properties of the system. Suggest innovative embedded systems for	B2. Identify, formulate and analyze research and solve complex Mechatronics engineering problems.		
D2.	buggest innovative embedded systems for	B3. Design Mechatronics system,		

	solving practice problems, related to SoC designing and implementation considering their constituting elements limits.	component, or process to meet desired needs within realistic constraints.		
w.Prof	fessional and Practical Skills: Upon	W. Professional and Practical Skills:		
succ	essful completion of the Advanced	Upon successful completion of the MSc. In		
	bedded Systems Design Course, the			
	luates will be able to:	graduates will be able to:		
c1.	Develop an integrated development	c2. Use advanced methodologies and		
	environment in embedded system based on	skills to solve Mechatronics		
	software and electronical hardware tools.	engineering problems.		
с2.	Apply formal method, testing, verification, validation and simulation techniques and tools in order to engineer reliable and safe embedded systems.	analysis and design for mechatronics		
x. Tra	nsferable Skills: Upon successful	X. Transferable Skills: Upon successful		
com	pletion of the Advanced Embedded	completion of the MSc. In Mechatronics		
	tems Design Course, the graduates will be	Engineering Program, the graduates will		
able	1	be able to:		
d1.	Establish a high level of skills in writing, presenting and defending research/project activities through course works.	D1. Prepare a complete thesis and term-courses works/ tasks, write their documents and defend on them.		
d2.	Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the field of embedded systems design and integration.	Demonstrate ethical principles, awareness of professional and ethical responsibility as well as knowledge of the standards utilized in related fields.		

• A	• Alignment of CILOs to Teaching and Assessment Strategies						
u.	u. Alignment of Knowledge and Understanding CILOs:						
	Knowledge and Understanding CILOs	Teaching Strategies Assessment Strategies					
a1.	Discuss hardware/software partitioning in system design and the strategies for embedded firmware design and development.	 Lectures, Self-Learning Problems/Studies, Group/Individual Projects Studies. Oral & Writing Exams Reports, Written Exam, Assignments. Studies. 					
a2.	Explain architectural features of 32-bit ARM Microcontrollers, as well as, their instruction sets, programming and applications in sustainable design and	 Lectures, Group/Individual Projects and Studies, Oral & Writing Exams Reports, Written Exam, Assignments 					

	development of embedded Systems.	 Active learning. 	
v.	Alignment of Intellectual Skills CILOs	:	
	Intellectual Skills CILOs	Teaching Strategies	Assessment Strategies
b1.	Analyze a system both as whole and in the included parts, for understanding how these parts interact in the functionality and properties of the system.	 Lectures, Project Supervision, Self-Learning, Case Study, Simulation Exercises, Independent Study, Analysis and Problem Solving, Presentations, 	 Oral & Writing Exams Reports, Survey, Written Exam, Assignments
b2.	Suggest innovative embedded systems for solving practice problems, related to SoC designing and implementation considering their constituting elements limits.	 Lectures, Project Supervision, Self-Learning, Case Study, Simulation Exercises, Independent Study, Analysis and Problem Solving, Presentations, 	 Oral & Writing Exams Reports, Survey, Written Exam, Assignments
w	. Alignment of Professional and Practica	al Skills CILOs:	
	Professional and Practical Skills CILOs	Teaching Strategies	Assessment Strategies
c1.	environment in embedded system based on software and electronical hardware tools. Apply formal method, testing, verification, validation and simulation techniques and tools in order to engineer reliable and safe embedded systems.	 Lectures, Project Supervision, Case Study, Simulation Exercises, Independent Study, Analysis and Problem Solving, Presentations, Lectures, Project Supervision, Self-Learning, Case Study, Simulation Exercises, Analysis and Problem Solving, 	 Oral & Writing Exams Seminar Report, Assignments, Written Research Proposal. Oral & Writing Exams Seminar Report, Assignments, Written Research Proposal.
х.	Alignment of Transferable (General) S		
	Transferable (General) Skills CILOs	Teaching Strategies	Assessment Strategies
d1.	Establish a high level of skills in writing, presenting and defending research/project activities through	Dissertation Defenses and Presentation,Independent Study,	Written Research Proposal,Assignments,

	course works.	Brainstorming,	■ Written Report.
		 Presenting Researches. 	
d2.	Balance professional and ethical	 Dissertation Defenses and 	■ Written Research
	responsibilities including contemporary	Presentation,	Proposal,
	issues and environmental awareness in	Independent Study,	Assignments,
	the field of embedded systems design	Presentation,	Presentation,
	and integration.	Brainstorming,	Written Report.
		Presenting Researches.	

• Co	• Course Content					
16.	Theoretical Aspect					
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs	
1	Introduction to Embedded Systems	 An Overview on ESs & SoC design, implementation, software and applications, Review of Digital Logic and Computer Architecture Concepts, ESs & IoT growth & Advancements. 	1	3	a1	
2	Advanced Embedded Systems Microcontrollers	 Introduction & History of ARM Microcontrollers, ARM's Types & Classifications based on their internal features and Applications. A 32-bit ARM-Cortex M3: Architecture and Internal Organization, Registers, Bus & Advanced Bus and Memories, ARM Instruction Set. 	3	9	a2	
		 ARM Arithmetic, Logic & Shift Instructions, ARM Load Instructions, ARM Timers. 				
3	Embedded System Design, Management & Control	 Combinational and Sequential Logic Circuit Design, Core of the embedded system, Memory, Sensors (resistive, optical, position, thermal) and Actuators (solenoid valves, relay/switch, opto-couplers), 	3	9	a1, a2, b1, b2, c1	

		Communication Interface, Embedded firmware (RTOS, Drivers, Application programs), Power-supply, PCB and Passive components, Safety and reliability, environmental issues. Ethical practice. Characteristics and quality attributes (Design Metric) of embedded system. Real time system's requirements, real time issues, and interrupt latency, Embedded Product development life cycle, Program modeling concepts: DFG, FSM, Petri-net, UML. Design, Programming of an Embedded System based ARM, ARM Programming in Assembly & High-Level Language: Interrupt service routines, macros, functions, modifiers, data types, device drivers, Multithreading			
4	Midterm Exam	programming. (Laboratory work on J2ME Java mobile application). Midterm Exam include ALL Previous Topics.	1	3	a1, a2, b1, b2, c1
5	Embedded Serial Communication	 An overview on Serial Communications: Serial & Parallel Communications, Basic Serial Communication protocols like SPI, SCI (RS232, RS485), I2C, CAN, Field-bus (Profibus). Wireless Communication Protocols like USB (v2.0), Bluetooth, Zig-Bee and Wireless sensor network, Case Study: Embedded Systems & loT. 	2	6	a1, b1, b2, c1

6	Embedded Software, Firmware Concepts and Design	 Real time operating system: POSIX Compliance, Need of RTOS in Embedded system software, Multitasking, context switching, IPC, Scheduler policies, Asynchronous and Synchronous Languages, Modeling and Verification of RT Systems, Architecture of kernel, Real-Time Kernels, Real-Time Scheduling, RM, EDF, Task scheduler, ISR, Timers, Memory Management, RTOS services in contrast with traditional OS. 	2	6	a1, b1, c1
7	Embedded SoC Design & Fault- Tolerance	 Design of the components: Memory, ALU, Datapath, Design and test of the μP, Digital Signal Processing, FIR, IIR, FFT. Fault-Tolerance Basics, Fault, Error, Failure, HW Fault-Tolerance, SW Fault-Tolerance. 	2	6	a1, b1, b2, c1, c2
8	Case Studies & Course Projects Presentation	 Students Presents in an individual and in Groups their course Projects, Programming Implementation and Paper Presentations works. 	1	3	a1, a2, b1, b2, c1, c2, d1,
9	Final Exam	 ALL Topics Except the Case Study & Course Project works. 	1	3	a1, a2, b1, b2, c1, c2
	Number of Weeks /and	d Contact Hours Per Semester	16	48	

I	17. Practical Aspect				
	Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs

1	- NONE		
2	•		
	•		
	Number of Weeks /and Contact Hours Per Semester		

18.	18. Tutorial Aspect:						
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)			
1	NONE						
2							
	Number of Weeks /and Units Per Semester	15	30				

• Teaching Strategies:

- Lectures,
- Seminars,
- Project Supervision,
- Self-Learning,
- Case Study,
- Simulation Exercises,
- Dissertation Defenses and Presentation,
- Independent Study,
- Analysis and Problem Solving,
- Brainstorming,
- Presenting Researches,
- Presentations,
- Group/Individual Projects and Studies,
- Active learning.

• Assessment Methods of the Course:

- Oral & Writing Exams
- Reports,
- Survey,
- Written Exam,

• Assessment Methods of the Course:

- Assignments
- Seminar Report,
- Written Research Proposal.

•	• Tasks and Assignments:					
No	Assignments/ Tasks	Individual/ Group	Mark	Week Due	CILOs (symbols)	
1	Assignments: Assignment 1: ARM Programming & Interfacing and ARM Interrupts Mechanism Assignment 2: Embedded Systems Serial Communication Assignment 3: Embedded Systems Software & ROS Assignment 4: SoC Design & Implementation using VHDL	Individual	10	5 th , 10 th , 10 th & 12 th	a1, a2, b1, b2, c1, c2, d1, d2	
2	Mini/Major Project: Graduates works and submit their individual & group Projects using Web searching, High-Level Programming to design and implement ESs & SoC products.	Individual/ Group	16	From the 4 th to 14 th	a1, a2, b1, b2, c1, c2, d1, d2	
3	Papers presentation & Case studies	Individual/ Group	8	Work from the 4 th to 14 th weeks	a2, b1, b2, c1, c2, d1, d2	
	Total Score		34	==	===	

•	• Learning Assessment:						
No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment	CILOs		
1	Tasks and Assignments	4 th to 14 th	34	34%	a1, a2, b1, b2, c1, c2, d1, d2		
2	Quizzes	6 th & 12 th	6	6%	a1, a2, b1, b2		
3	Midterm Exam	8 th	20	20%	a1, a2, b1, b2, c2		
4	Final Exam (Theoretical)	16 th	40	40%	a1, a2, b1, b2, c2		
	Total			100%	===		

• Learning Resources:

15. Required Textbook(s):

- 1. Joseph Yiu, 2014, "The Definitive Guide to the ARM Cortex-M3 and Cortex-M4 Processors", Newnes, 3rd Ed.
- 2. James K Peckol, 2019, "Embedded Systems A contemporary Design Tool", 2nd Ed, Weily-Blackwell.
- 3. David. A.Patterson & John L. Hennessy, 2020, "Computer Organization and Design RISC-V the Hardware Software Interface", 1st Edition, Morgan Kaufmann.

16.Essential References:

- 1. Shibu K V, 2009, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited.
- 2. F. Vahid, Tony D Givargis, 2001, "Embedded System Design A unified hardware and software introduction", 1st Ed. Wiley)

17. Electronic Materials and Web Sites etc.

Websites:

- 1. Syllabus, lecture notes and other materials can be found at http://www.iyte.edu.tr/~tolgaayav/courses/ceng563
- 2. To access some papers with codes http://www.githup.com

Journals:

1. Enquire the search engines by sub-topic mentioned in the course plan to get accurate and up-to-date information.

IEEE Publisher

https://www.ieee.org

Elsevier Publisher

https://www.elsevier.org

Science Direct Publisher

https://www.Sciencedirect.com

الضوابط والسياسات المتبعة في المقرر Course Policies	.vii
بعد الرجوع للوانح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتى:	!
سياسة حضور الفعاليات التعليمية Class Attendance:	1
- يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. - يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
ضوابط الامتحان Exam Attendance/Punctuality:	3
- لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان - إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
التعيينات والمشاريع Assignments & Projects:	4
- يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها. - إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.	
الغش Cheating:	5
- في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب. - في حال ثبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.	
الانتحال Plagiarism:	6
 في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك 	
سياسات أخرى Other policies:	7
- أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ	

Academic Year: 2021

Course Plan (Syllabus): Advanced Embedded Systems Design

• Information about Faculty Member Responsible for the Course:								
Name	Farouk Al-Fahaidy	Office Hours						
Location &Telephone No.	777909815	SAT	SUN	MON	TUE	WED	THU	
E-mail	farouqakh@gmail.com							

	• General information about the course:						
46	Course Title	A	dvanced Eml	bedded Systems Des	ign		
47	Course Code and Number	CCE580/MTE531					
			Total				
48	Credit Hours	Lecture	Practical	Seminar/Tutorial	Total		
		3			3		
49	Study Level and Semester		2 nd	Semester			
50	Pre-requisites						
51	Co –requisite						
52	Program (s) in which the course is offered	M. S. in Mechatronics Engineering Program					
53	Language of teaching the course	English					
54	Location of teaching the course						

• Course Description:

This course provides advanced concepts on Embedded systems design, advanced microcontrollers architecture and capabilities, as well as, System on Chip (SoC) design. The future of embedded systems and IoT lies in the advancement of technologies that enable faster communication with high interwoven connections between different devices. Course covers, an overview on advanced 32-bit ARM microcontrollers, Embedded System Design concepts & Project Management, ESs Firmware/software, ESs Digital Signal Processing and ESs Communications. Throughout course projects & case study works, students develop their skills in ESs design and implementation.

Course Intended Learning Outcomes (CILOs):

Upon successful completion of the **Advanced Embedded Systems Design** course, graduate students will be able to:

- a1. Discuss hardware/software partitioning in system design and the strategies for embedded firmware design and development.
- a2. Explain architectural features of 32-bit ARM Microcontrollers, as well as, their instruction sets, programming and applications in sustainable design and development of embedded Systems.
- b1. Analyze a system both as whole and in the included parts, for understanding how these parts interact in the functionality and properties of the system.
- **b2.** Suggest innovative embedded systems for solving practice problems, related to SoC designing and implementation considering their constituting elements limits.
- c1. Develop an integrated development environment in embedded system based on software and electronical hardware tools.
- c2. Apply formal method, testing, verification, validation and simulation techniques and tools in order to engineer reliable and safe embedded systems.
- d1. Establish a high level of skills in writing, presenting and defending research/project activities through course works.
- **d2.** Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the field of embedded systems design and integration.

•	Course Content						
1.	Theoretical Aspect						
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours			
1	Introduction to Embedded Systems	 An Overview on ESs & SoC design, implementation, software and applications, Review of Digital Logic and Computer Architecture Concepts, ESs & IoT growth & Advancements. 	1	3			
		 Introduction & History of ARM Microcontrollers, ARM's Types & Classifications based on their internal features and Applications. 					
2	Advanced Embedded Systems Microcontrollers	 A 32-bit ARM-Cortex M3: Architecture and Internal Organization, Registers, Bus & Advanced Bus and Memories, ARM Instruction Set. 	3	9			
		 ARM Arithmetic, Logic & Shift Instructions, ARM Load Instructions, ARM Timers. 					

3	Embedded System Design, Management & Control	 Combinational and Sequential Logic Circuit Design, Core of the embedded system, Memory, Sensors (resistive, optical, position, thermal) and Actuators (solenoid valves, relay/switch, opto-couplers), Communication Interface, Embedded firmware (RTOS, Drivers, Application programs), Power-supply, PCB and Passive components, Safety and reliability, environmental issues. Ethical practice. Characteristics and quality attributes (Design Metric) of embedded system. Real time system's requirements, real time issues, and interrupt latency, Embedded Product development life cycle, Program modeling concepts: DFG, FSM, Petri-net, UML. Design, Programming of an Embedded System based ARM, ARM Programming in Assembly & High-Level Language: Interrupt service routines, macros, functions, modifiers, data types, device drivers, Multithreading programming. (Laboratory work on J2ME Java mobile application). 	3	9
4	Midterm Exam	Midterm Exam include ALL Previous Topics.	1	3
5	Embedded Serial Communication	 An overview on Serial Communications: Serial & Parallel Communications, Basic Serial Communication protocols like SPI, SCI (RS232, RS485), I2C, CAN, Field-bus (Profibus). 	2	6

6	Embedded Software, Firmware Concepts and Design	 Wireless Communication Protocols like USB (v2.0), Bluetooth, Zig-Bee and Wireless sensor network, Case Study: Embedded Systems & loT. Real time operating system: POSIX Compliance, Need of RTOS in Embedded system software, Multitasking, context switching, IPC, Scheduler policies, Asynchronous and Synchronous Languages, Modeling and Verification of RT Systems, Architecture of kernel, Real-Time Kernels, Real-Time Scheduling, RM, EDF, Task scheduler, ISR, Timers, Memory Management, RTOS services in contrast with 	2	6
7	Embedded SoC Design & Fault- Tolerance	traditional OS. Design of the components: Memory, ALU, Datapath, Design and test of the μP, Digital Signal Processing, FIR, IIR, FFT. Fault-Tolerance Basics, Fault, Error, Failure, HW Fault-Tolerance, SW Fault-Tolerance.	2	6
8	Case Studies & Course Projects Presentation	 Students Presents in an individual and in Groups their course Projects, Programming Implementation and Paper Presentations works. 	1	3
9	Final Exam	ALL Topics Except the Case Study & Course Project works.	1	3
	Number of Weeks /and	d Contact Hours Per Semester	16	48

2.	Practical Aspect			
Order	Practical / Tutorials topics	Number of	Contact	Course ILOs

		Weeks	Hours	
1	3. NONE			
	Number of Weeks /and Contact Hours Per Semester			

8.	8. Training/ Tutorials/ Exercises Aspects:						
Order	Tutorials/ Exercises	Week Due	Contact Hours				
1	NONE						
2 -							
Numb	Number of Weeks /and Contact Hours Per Semester						

• Teaching Strategies:

- Lectures,
- Seminars,
- Project Supervision,
- Self-Learning,
- Case Study,
- Simulation Exercises,
- Dissertation Defenses and Presentation,
- Independent Study,
- Analysis and Problem Solving,
- Brainstorming,
- Presenting Researches,
- Presentations,
- Group/Individual Projects and Studies,
- Active learning.

• Assessment Methods of the Course:

- Oral & Writing Exams
- Reports,
- Survey,
- Written Exam,
- Assignments

• Assessment Methods of the Course:

- Seminar Report,
- Written Research Proposal.

	Tasks and Assignments:					
No	Assignments	Individual /Groups	Mark	Week Due		
1	Assignments: Assignment 1: ARM Programming & Interfacing and ARM Interrupts Mechanism Assignment 2: Embedded Systems Serial Communication Assignment 3: Embedded Systems Software & ROS Assignment 4: SoC Design & Implementation using VHDL	Individual	10	5 th , 10 th , 10 th & 12 th		
2	Mini/Major Project: Graduates works and submit their individual & group Projects using Web searching, High-Level Programming to design and implement ESs & SoC products.	Individual/ Group	16	From the 4 th to 14 th		
3	Papers presentation & Case studies	Individual/ Group	8	Work from the 4 th to 14 th weeks		
	Total Score		34			

	• Learning Assessment:			
No	Assessment Method	Week Due	Mark	Proportion of Final Assessment %
1	Tasks and Assignments	4 th to 14 th	34	34%
2	Quizzes	6 th & 12 th	6	6%
3	Midterm Exam	8 th	20	20%
4	Final Exam (Theoretical)	16 th	40	40%
	Total		100	100 %

• Learning Resources:

9. Required Textbook(s):

- 1. Joseph Yiu, 2014, "The Definitive Guide to the ARM Cortex-M3 and Cortex-M4 Processors", Newnes, 3rd Ed.
- 2. James K Peckol, 2019, "Embedded Systems A contemporary Design Tool", 2nd Ed, Weily-Blackwell.
- 3. David. A.Patterson & John L. Hennessy, 2020, "Computer Organization and Design RISC-V the Hardware Software Interface", 1st Edition, Morgan Kaufmann.

10. Essential References:

- 1. Shibu K V, 2009, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited.
- 2. F. Vahid, Tony D Givargis, 2001, "Embedded System Design A unified hardware and software introduction", 1st Ed. Wiley)

11. Electronic Materials and Web Sites etc.

Websites:

- 1. Syllabus, lecture notes and other materials can be found at http://www.iyte.edu.tr/~tolgaayav/courses/ceng563
- 2. To access some papers with codes http://www.githup.com

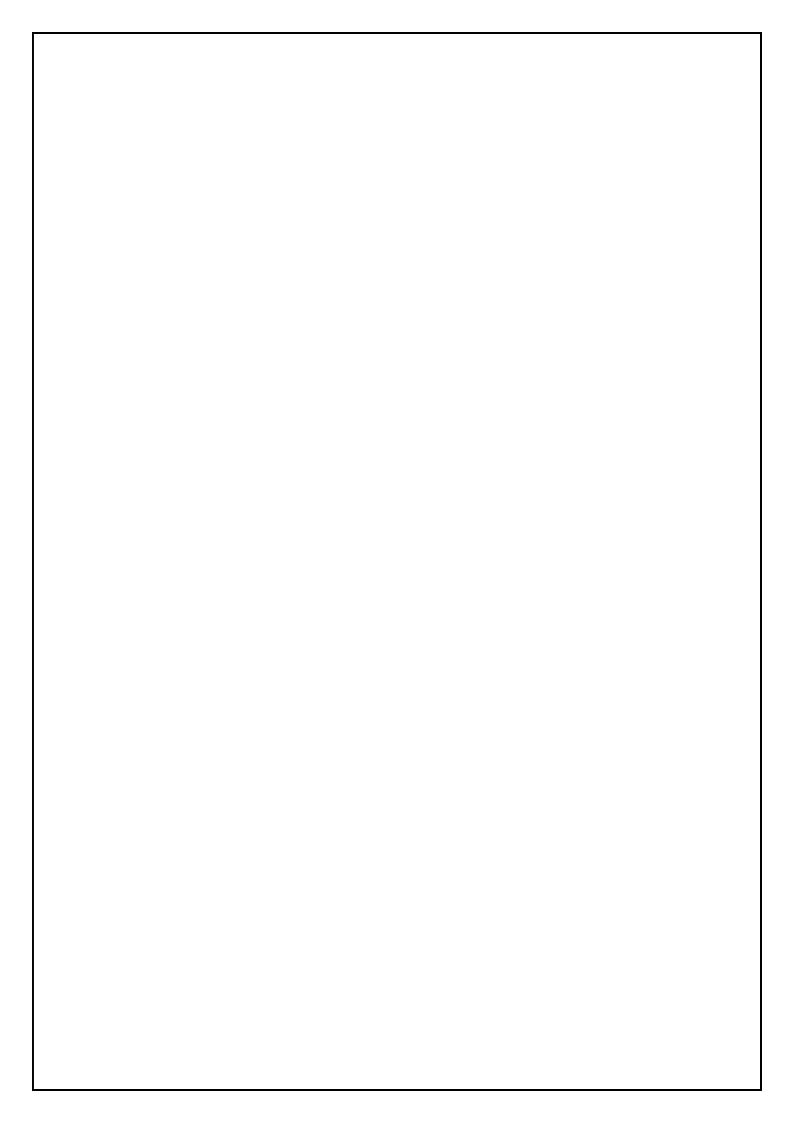
Journals:

3. Enquire the search engines by sub-topic mentioned in the course plan to get accurate and up-to-date information.

IEEE Publisher

https://www.ieee.org

Elsevier Publisher


https://www.elsevier.org

Science Direct Publisher

https://www.Sciencedirect.com

الضوابط والسياسات المتبعة في المقرر Course Policies	.viii
بعد الرجوع للوانح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتى:	1
سياسة حضور الفعاليات التعليمية Class Attendance:	1
 يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. 	
- يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم	
اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
_ يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات	
يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
- لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان	
- إذا تغيب الطالب عن الامتحان النهائي تُطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
التعيينات والمشاريع Assignments & Projects:	4
- يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها.	
- إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.	
الغش Cheating:	5
- في حال تبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب.	
- في حال تُبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.	
الانتحال Plagiarism:	6

- في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك سياسات أخرى Other policies:							
	7 سياسات أخرى Other policies: - أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ						

