Course Specification of: Advanced Embedded Systems Design

Course Code (CCE580/MTE531)

Course Title:	dvanced	Embedded Sys	tems Design		
Course Code and Number:	CCE	580/MTE53	1		
	Credit	Credit Hours			
Credit Hours:	ecture	Practical	eminar/Tutorial	Tota	
	3			3	
Study Level and Semester:	st Semester (Computer) / 2nd Semester (Mechatronics)				
Pre-requisites (if any):					
Co-requisites (if any):					
Program (s) in which the course is	M. Sc.	in Computer	Engineering & Con	trol and	
offered:	M. Sc.	M. Sc. in Mechatronics Engineering Programs			
Language of teaching the course:	inglish				
Study System:	Courses &	t Thesis			
Prepared By:	Assoc. Pr	Assoc. Prof. Dr. Farouk Al-Fahaidy			
Reviewed by:	ssoc. Prof. Dr. Radwan M. AL Bouthigy				
Date of Approval:					

I. Course Description:

This course provides advanced concepts on Embedded systems design, advanced microcontrollers architecture and capabilities, as well as, System on Chip (SoC) design. The future of embedded systems and IoT lies in the advancement of technologies that enable faster communication with high interwoven connections between different devices. Course covers, an overview on advanced 32-bit ARM microcontrollers, Embedded System Design concepts & Project Management, ESs Firmware/software, ESs Digital Signal Processing and ESs Communications. Throughout course projects & case study works, students develop their skills in ESs design and implementation.

Course Intended Learning Outcomes (CILOs):

Upon successful completion of Advanced Embedded Systems Design Course, the graduates will be able to:

Discuss hardware/software partitioning in system design and the strategies for embedded firmware design and development.

Explain architectural features of 32-bit ARM Microcontrollers, as well as, their instruction sets, programming and applications in sustainable design and development of embedded Systems.

Analyze a system both as whole and in the included parts, for understanding how these parts interact in the functionality and properties of the system.

Suggest innovative embedded systems for solving practice problems, related to SoC designing and implementation considering their constituting elements limits.

Develop an integrated development environment in embedded system based on software and electronical hardware tools.

Apply formal method, testing, verification, validation and simulation techniques and tools in order to engineer reliable and safe embedded systems.

Establish a high level of skills in writing, presenting and defending research/project activities through course works.

Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the field of embedded systems design and integration.

Alignment of Course Intended Learning Outcomes (CILOs) to Program Intended Learning Outcomes (PILOs)

CILOs	PILOs		
Knowledge and Understanding: Upon	. Knowledge and Understanding: Upon		
successful completion of the Advanced	successful completion of the MSc. In		
Embedded Systems Design Course, the	Computer Engineering & Control		
graduates will be able to:	Program , the graduates will be able to:		
Discuss hardware/software partitioning in	Demonstrate deep understanding of computer		
system design and the strategies for	engineering and control as well as knowledge		
embedded firmware design and	of applied mathematics and engineering		
development.	science to the field of computing and		
	intelligent control.		
	A2. Recognize and Explain the contemporary		
	engineering technologies and issues in the		
	specialization field of computing and control.		
Explain architectural features of 32-bit	A3. Explain in-depth the principles of		
ARM Microcontrollers, as well as, their	sustainable design and development of		
instruction sets, programming and	computing products, standards and protocols		
applications in sustainable design and	and intelligent control systems.		
development of embedded Systems.			
Cognitive/ Intellectual Skills: Upon successful	. Cognitive/ Intellectual Skills: Upon		
completion of the Advanced Embedded Systems	successful completion of the MSc. In		
Design Course, the graduates will be able to:	Mechanical Engineering Program, the		
	graduates will be able to:		
Analyze a system both as whole and in the	1. Evaluate, select and apply appropriate		
included parts, for understanding how	principles, methodologies, techniques, tools		
these parts interact in the functionality	and packages to the analysis, specification,		
and properties of the system.	development and evaluation of computing		
	and engineering systems.		
Suggest innovative embedded systems for	3. Propose computing system, component, or		
solving practice problems, related to SoC	process to meet desired needs within realistic		
	<u>↓</u> -		

designing and implementation considering	constraints.
their constituting elements limits.	
Professional and Practical Skills: Upon	F. Professional and Practical Skills: Upon
successful completion of the Advanced	successful completion of the MSc. In
Embedded Systems Design Course, the	Computer Engineering & Control
graduates will be able to:	Program, the graduates will be able to:
Develop an integrated development	1. Develop, configure, upgrade, and/or write
environment in embedded system based	computer software/program to solve
on software and electronical hardware	computing and control problems.
tools.	
Apply formal method, testing, verification,	2. Use advanced methodology and skills to the
validation and simulation techniques and	formulation and practice of computer
tools in order to engineer reliable and safe	science, engineering and control systems.
embedded systems.	
Transferable Skills: Upon successful completion	I. Transferable Skills: Upon successful
of the Advanced Embedded Systems Design	completion of the MSc. In Computer
Course, the graduates will be able to:	Engineering & Control Program, the
	graduates will be able to:
Establish a high level of skills in	
	. Prepare complete thesis and reports, present
writing, presenting and defending	. Prepare complete thesis and reports, present ideas clearly and defend them.
writing, presenting and defending	
writing, presenting and defending research/project activities through	
writing, presenting and defending research/project activities through course works.	ideas clearly and defend them.
writing, presenting and defending research/project activities through course works. Balance professional and ethical	ideas clearly and defend them. Balance professional and ethical
writing, presenting and defending research/project activities through course works. Balance professional and ethical responsibilities including contemporary	ideas clearly and defend them. Balance professional and ethical responsibilities including contemporary
writing, presenting and defending research/project activities through course works. Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the	ideas clearly and defend them. Balance professional and ethical responsibilities including contemporary issues and environmental awareness.
writing, presenting and defending research/project activities through course works.Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the field of embedded systems design and	ideas clearly and defend them. Balance professional and ethical responsibilities including contemporary
writing, presenting and defending research/project activities through course works.Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the field of embedded systems design and	ideas clearly and defend them. Balance professional and ethical responsibilities including contemporary issues and environmental awareness.
writing, presenting and defending research/project activities through course works.Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the field of embedded systems design and	ideas clearly and defend them. Balance professional and ethical responsibilities including contemporary issues and environmental awareness. Conduct independently and communicate

ligi	nment of Knowledge and Understanding	CILOs:				
lnow	vledge and Understanding CILOs	Teaching Strategies	Assessment Strategies			
1.	Discuss hardware/software partitioning	Lectures,	Oral & Writing Exams			
	in system design and the strategies for	Self-Learning	Reports,			
	embedded firmware design and	Problems/Studies,	Written Exam,			
	development.	Group/Individual	Assignments.			
		Projects and Studies.				
	Explain architectural features of 32-bit	Lectures,	Oral & Writing Exams			
	ARM Microcontrollers, as well as, their	Group/Individual	Reports,			
	instruction sets, programming and	Projects and Studies,	Written Exam,			
	applications in sustainable design and	Active learning.	Assignments			
	development of embedded Systems.					
Alignment of Intellectual Skills CILOs:						
ntell	ectual Skills CILOs	Teaching Strategies	Assessment			
			Strategies			
1.	Analyze a system both as whole and in	Lectures,	Oral & Writing			
	the included parts, for understanding	Project Supervision,	Exams			
	how these parts interact in the	Self-Learning,	Reports,			
	functionality and properties of the	Case Study,	Survey,			
	system.	Simulation Exercises,	Written Exam,			
		Independent Study,	Assignments			
		Analysis and Problem				
		Solving,				
		Presentations,				
2.	Suggest innovative embedded systems	Lectures,	Oral & Writing			
	for solving practice problems, related	Project Supervision,	Exams			
	to SoC designing and implementation	Self-Learning,	Reports,			
	considering their constituting elements	Case Study,	Survey,			
	limits.	Simulation Exercises,	Written Exam,			
		Independent Study,	Assignments			
		Analysis and Problem				
		Solving,				
		Presentations,				
lig	nment of Professional and Practical Skills	s CILOs:				
rofe	ssional and Practical Skills CILOs	Teaching Strategies	Assessment Strategi			

	Develop an integrated development	Lectures,	Oral & Writing
	environment in embedded system	Project Supervision,	Exams
	based on software and electronical	Case Study,	Seminar Report,
	hardware tools.	Simulation Exercises,	Assignments,
		Independent Study,	Written Research
		Analysis and Problem	Proposal.
		Solving,	
		Presentations,	
	Apply formal method, testing,	Lectures,	Oral & Writing
	verification, validation and simulation	Project Supervision,	Exams
	techniques and tools in order to	Self-Learning,	Seminar Report,
	engineer reliable and safe embedded	Case Study,	Assignments,
	systems.	Simulation Exercises,	Written Research
		Analysis and Problem	Proposal.
		Solving,	
		Presentations,	
Alig	nment of Transferable (General) Skills		
0	nment of Transferable (General) Skills sferable (General) Skills CILOs		Assessment Strategies
0	· · · · ·	CILOs:	Assessment Strategies Written Research
0	sferable (General) Skills CILOs	CILOs: Teaching Strategies	
0	sferable (General) Skills CILOs Establish a high level of skills in writing, presenting and defending	CILOs: Teaching Strategies Dissertation Defenses and	Written Research
0	sferable (General) Skills CILOs Establish a high level of skills in writing, presenting and defending research/project activities through	CILOs: Teaching Strategies Dissertation Defenses and Presentation,	Written Research Proposal,
0	sferable (General) Skills CILOs Establish a high level of skills in writing, presenting and defending	CILOs: Teaching Strategies Dissertation Defenses and Presentation, Independent Study,	Written Research Proposal, Assignments,
0	sferable (General) Skills CILOs Establish a high level of skills in writing, presenting and defending research/project activities through	CILOs: Teaching Strategies Dissertation Defenses and Presentation, Independent Study, Presentation,	Written Research Proposal, Assignments, Presentation,
0	sferable (General) Skills CILOs Establish a high level of skills in writing, presenting and defending research/project activities through	CILOs: Teaching Strategies Dissertation Defenses and Presentation, Independent Study, Presentation, Brainstorming,	Written Research Proposal, Assignments, Presentation,
0	sferable (General) Skills CILOs Establish a high level of skills in writing, presenting and defending research/project activities through course works.	CILOs: Teaching Strategies Dissertation Defenses and Presentation, Independent Study, Presentation, Brainstorming, Presenting Researches.	Written Research Proposal, Assignments, Presentation, Written Report.
0	sferable (General) Skills CILOs Establish a high level of skills in writing, presenting and defending research/project activities through course works. Balance professional and ethical	CILOs: Teaching Strategies Dissertation Defenses and Presentation, Independent Study, Presentation, Brainstorming, Presenting Researches. Dissertation Defenses and	Written Research Proposal, Assignments, Presentation, Written Report. Written Research
0	sferable (General) Skills CILOs Establish a high level of skills in writing, presenting and defending research/project activities through course works. Balance professional and ethical responsibilities including	CILOs: Teaching Strategies Dissertation Defenses and Presentation, Independent Study, Presentation, Brainstorming, Presenting Researches. Dissertation Defenses and Presentation,	Written Research Proposal, Assignments, Presentation, Written Report. Written Research Proposal,
0	sferable (General) Skills CILOs Establish a high level of skills in writing, presenting and defending research/project activities through course works. Balance professional and ethical responsibilities including contemporary issues and	CILOs: Teaching Strategies Dissertation Defenses and Presentation, Independent Study, Presentation, Brainstorming, Presenting Researches. Dissertation Defenses and Presentation, Independent Study,	Written ResearchProposal,Assignments,Presentation,Written Report.Written ResearchProposal,Assignments,

I. Course Content

Theoretical Aspect

Theoret	Theoretical Aspect					
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs	
1	Introduction to Embedded Systems	Course Orientations: Syllabus, Aims, Objectives and LOs. An Overview on ESs & SoC design, implementation, software and applications, Review of Digital Logic and Computer Architecture Concepts, ESs & IoT growth & Advancements.	1	3	a1	
2	Advanced Embedded Systems Microcontrollers	Introduction & History of ARM Microcontrollers, ARM's Types & Classifications based on their internal features and Applications. A 32-bit ARM-Cortex M3: Architecture and Internal Organization, Registers, Bus & Advanced Bus and Memories, ARM Instruction Set. ARM Arithmetic, Logic & Shift Instructions, ARM Load Instructions, ARM Timers.	3	9	a2	
3	Embedded	Combinational and Sequential	3	9	a1,	

System Design,	Logic Circuit Design,	a2
Management &	Core of the embedded system,	b1
Control	Memory, Sensors (resistive,	b2
	optical, position, thermal) and	
	Actuators (solenoid valves,	c1
	relay/switch, opto-couplers),	
	Communication Interface,	
	Embedded firmware (RTOS,	
	Drivers, Application programs),	
	Power-supply, PCB and Passive	
	components, Safety and	
	reliability, environmental issues.	
	Ethical practice.	
	Characteristics and quality	
	attributes (Design Metric) of	
	embedded system. Real time	
	system's requirements, real time	
	issues, and interrupt latency,	
	Embedded Product development	
	life cycle, Program modeling	
	concepts: DFG, FSM, Petri-net,	
	UML.	
	Design, Programming of an	
	Embedded System based ARM,	
	ARM Programming in Assembly	
	& High-Level Language: Interrupt	
	service routines, macros,	
	functions, modifiers, data types,	
	device drivers, Multithreading	
	programming. (Laboratory work	
	on J2ME Java mobile	

		application).			
					a1,
		Midterm Exam include ALL			a2,
4	Midterm Exam	Previous Topics.	1	3	b1,
					b2,
					c1
		An overview on Serial			
		Communications: Serial &			
		Parallel Communications,			
		Basic Serial Communication			
	Embedded	protocols like SPI, SCI (RS232,			a1,
		RS485), I2C, CAN, Field-bus			b1,
5	Serial	(Profibus).	2	6	b2,
	Communication	Wireless Communication			c1
		Protocols like USB (v2.0), Bluetooth, Zig-Bee and Wireless			
		sensor network,			
		Case Study: Embedded Systems &			
		IoT.			
	5.1.1.1	Real time operating system:			
	Embedded	POSIX Compliance, Need of RTOS			
	Software,	in Embedded system software,			a1,
6	Firmware	Multitasking, context switching,	2	6	b1 ,
	Concepts and	IPC, Scheduler policies,			c1
	Design	Asynchronous and Synchronous			
		Languages, Modeling and			

		Verification of RT Systems, Architecture of kernel, Real-Time Kernels, Real-Time Scheduling, RM, EDF, Task scheduler, ISR, Timers, Memory Management, RTOS services in contrast with traditional OS.	-		
7	Embedded SoC Design & Fault- Tolerance	Design of the components: Memory, ALU, Datapath, Design and test of the μP, Digital Signal Processing, FIR, IIR, FFT. Fault-Tolerance Basics, Fault, Error, Failure, HW Fault-Tolerance, SW Fault- Tolerance.	2	6	a1, b1, b2, c1, c2
8	Case Studies & Course Projects Presentation	Students Presents in an individual and in Groups their course Projects, Programming Implementation and Paper Presentations works.	1	3	a1, a2, b1, b2, c1, c2, d1, d2
9	Final Exam	ALL Topics Except the Case Study & Course Project works.	1	3	a1, a2, b1, b2,

					c1 ,
					c2
Number of Weeks /and Contact Hours Per Semester		16	48		

Practical Aspect					
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs	
1	NONE				
2					
Number o	Number of Weeks /and Contact Hours Per Semester				

Tutor	Tutorial Aspect:					
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)		
1	NONE					
2						
Numb	per of Weeks /and Units Per Semester	30				

II. ⁷	Teaching	Strategies:
------------------	----------	--------------------

Lectures,

Seminars,

Project Supervision,

Self-Learning,

Case Study,

Simulation Exercises,

Dissertation Defenses and Presentation,

Independent Study,

Analysis and Problem Solving,

Brainstorming,

Presenting Researches,

Presentations,

Group/Individual Projects and Studies,

Active learning.

Assessment Methods of the Course:

Oral & Writing Exams

Reports,

Κ.

Survey,

Written Exam,

Assignments

Seminar Report,

Written Research Proposal.

. Tasks and Assignments:						
No	Assignments/ Tasks	Individual/ Group	Mark	Week Due	CILOs (symbols)	
1	Assignments:	Individual	10	5 th , 10 th ,	a1, a2, b1, b2,	

Graduates works and submit their individual Individual/ From b1, b 16 the 4 th the 4 th the 4 th the 4 th	dividual/ b1. b2.
	roup c1, c2, d1, to 14 th
Level Programming to design and implement d2	

I. Learning Assessment:						
No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment	CILOs	
1	Tasks and Assignments	4 th to 14 th	34	34%	a1, a2, b1, b2, c1, c2,	
2	Quizzes	6 th & 12 th	6	6%	a1, a2, b1, b2	
3	Midterm Exam	8 th	20	20%	a1, a2, b1,	
4	Final Exam (Theoretical)	16 th	40	40%	a1, a2, b1, b2, c2	
	Total			100%	===	

II. Learning Resources:

Required Textbook(s):

Joseph Yiu, 2014, "The Definitive Guide to the ARM Cortex-M3 and Cortex-M4 Processors", Newnes, 3rd Ed.

James K Peckol, 2019, "Embedded Systems – A contemporary Design Tool", 2nd Ed, Weily-Blackwell. David. A.Patterson & John L. Hennessy, 2020, "Computer Organization and Design RISC-V the Hardware Software Interface", 1st Edition, Morgan Kaufmann.

Essential References:

Shibu K V, 2009, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited.

F. Vahid, Tony D Givargis, 2001, "Embedded System Design – A unified hardware and software introduction", 1st Ed. Wiley)

Electronic Materials and Web Sites etc.

Websites:

Syllabus, lecture notes and other materials can be found at

http://www.iyte.edu.tr/~tolgaayav/courses/ceng563

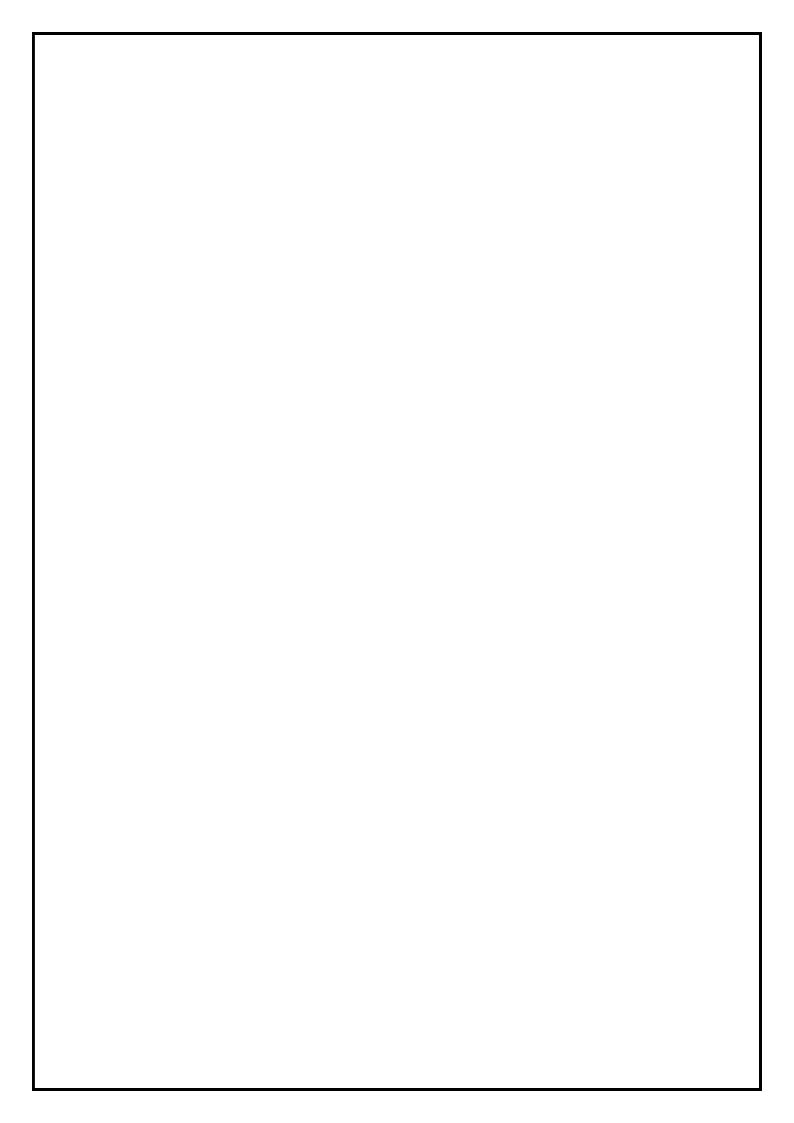
To access some papers with codes

http://www.githup.com

Journals:

Enquire the search engines by sub-topic mentioned in the course plan to get accurate and up-to-date information.

IEEE Publisher


https://www.ieee.org

Elsevier Publisher

https://www.elsevier.org

Science Direct Publisher

https://www.Sciencedirect.com

Course Policiesالضوابط والسياسات المتبعة في المقرر	
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتى:	
Class Attendance: سياسة حضور الفعاليات التعليمية	1
يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك.	
يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم	
اقرار الحرمان من مجلس القسم.	
Tardy: الحضور المتأخر	2
يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات	
يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
Exam Attendance/Punctuality: ضوابط الامتحان	3
لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان -	
إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
Assignments & Projects: التعيينات والمشاريع	4
يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها.	
إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه	
Cheating: الغش	5
في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب	
في حال ثبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.	
الانتحالPlagiarism:	6
في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك -	
Other policies: سياسات أخرى	7
أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ -	

<u>Course Plan (Syllabus</u>): Advanced Embedded Systems Design

Information about Faculty Member Responsible for the Course:							
Name	Farouk Al-Fahaidy	Office	Hours				
Location &Telephone No.	777909815	SAT	SUN	MON	TUE	WED	THU
E-mail	farouqakh@gmail.com						

General information about the course:							
).	Course Title	Advanced	Embedded Sy	stems Design			
	Course Code and Number	CCE580/M	ITE531				
		Credit Ho	urs		Total		
	Credit Hours	ecture	Totai				
		3			3		
	Study Level and Semester	st Semester (Computer) / 2 nd Semester (Mechatronics)					
	Pre-requisites						
.	Co –requisite						
	Program (s) in which the course	1. S. in Com	puter Enginee	ering & Control Pro	ogram		
).	is offered	1. S. in Mechatronics Engineering Program					
.	Language of teaching the course	Inglish					
	Location of teaching the course						

Course Description:

This course provides advanced concepts on Embedded systems design, advanced

microcontrollers architecture and capabilities, as well as, System on Chip (SoC) design. The future of embedded systems and IoT lies in the advancement of technologies that enable faster communication with high interwoven connections between different devices. Course covers, an overview on advanced 32-bit ARM microcontrollers, Embedded System Design concepts & Project Management, ESs Firmware/software, ESs Digital Signal Processing and ESs Communications. Throughout course projects & case study works, students develop their skills in ESs design and implementation.

Course Intended Learning Outcomes (CILOs):

Upon successful completion of the Advanced Embedded Systems Design course, graduate students will be able to:

Discuss hardware/software partitioning in system design and the strategies for embedded firmware design and development.

Explain architectural features of 32-bit ARM Microcontrollers, as well as, their instruction sets, programming and applications in sustainable design and development of embedded Systems.

Analyze a system both as whole and in the included parts, for understanding how these parts interact in the functionality and properties of the system.

Suggest innovative embedded systems for solving practice problems, related to SoC designing and implementation considering their constituting elements limits.

Develop an integrated development environment in embedded system based on software and electronical hardware tools.

Apply formal method, testing, verification, validation and simulation techniques and tools in order to engineer reliable and safe embedded systems.

Establish a high level of skills in writing, presenting and defending research/project activities through course works.

d2. Balance professional and ethical responsibilities including contemporary issues and

environmental awareness in the field of embedded systems design and integration.

Course Content							
Theoret	tical Aspect						
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours			
		Course Orientations: Syllabus, Aims, Objectives and LOs.					
1	Introduction to Embedded Systems	An Overview on ESs & SoC design, implementation, software and applications, Review of Digital Logic and Computer Architecture Concepts, ESs & IoT growth & Advancements.	1	3			
2	Advanced Embedded Systems Microcontrollers	Introduction & History of ARM Microcontrollers, ARM's Types & Classifications based on their internal features and Applications. A 32-bit ARM-Cortex M3: Architecture and Internal Organization, Registers, Bus & Advanced Bus and Memories, ARM Instruction Set. ARM Instruction Set. ARM Arithmetic, Logic & Shift Instructions, ARM Load Instructions, ARM Timers.	3	9			

3	Embedded System Design, Management & Control	Combinational and Sequential Logic Circuit Design, Core of the embedded system, Memory, Sensors (resistive, optical, position, thermal) and Actuators (solenoid valves, relay/switch, opto-couplers), Communication Interface, Embedded firmware (RTOS, Drivers, Application programs), Power-supply, PCB and Passive components, Safety and reliability, environmental issues. Ethical practice. Characteristics and quality attributes (Design Metric) of embedded system. Real time system's requirements, real time issues, and interrupt latency, Embedded Product development life cycle, Program modeling concepts: DFG, FSM, Petri-net, UML. Design, Programming of an Embedded System based ARM, ARM Programming in Assembly & High-Level Language: Interrupt service routines, macros, functions, modifiers, data types, device drivers, Multithreading programming. (Laboratory work on	3	9
---	---	--	---	---

		J2ME Java mobile application).		
4	Midterm Exam	Midterm Exam include ALL Previous Topics.	1	3
5	Embedded Serial Communication	An overview on Serial Communications: Serial & Parallel Communications, Basic Serial Communication protocols like SPI, SCI (RS232, RS485), I2C, CAN, Field-bus (Profibus). Wireless Communication Protocols	2	6
		like USB (v2.0), Bluetooth, Zig-Bee and Wireless sensor network, Case Study: Embedded Systems & IoT.		
6	Embedded Software, Firmware Concepts and Design	Real time operating system: POSIX Compliance, Need of RTOS in Embedded system software, Multitasking, context switching, IPC, Scheduler policies, Asynchronous and Synchronous Languages, Modeling and Verification of RT Systems, Architecture of kernel, Real-Time Kernels, Real-Time Scheduling, RM, EDF, Task scheduler, ISR,	2	6

		 RTOS services in contrast with traditional OS. Design of the components: Memory, ALU, Datapath, Design and test of the μP, 		
7	Embedded SoC Design & Fault- Tolerance	Digital Signal Processing, FIR, IIR, FFT. Fault-Tolerance Basics, Fault, Error, Failure, HW Fault-Tolerance, SW Fault- Tolerance.	2	6
8	Case Studies & Course Projects Presentation	Students Presents in an individual and in Groups their course Projects, Programming Implementation and Paper Presentations works.	1	3
9	Final Exam of Weeks /and Contact Hours	ALL Topics Except the Case Study & Course Project works.	1 16	3 48

Practical Aspect				
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs
1	. NONE			

Number of Weeks /and Contact Hours Per Semester		

Training/ Tutorials/ Exercises Aspects:			
Order	Tutorials/ Exercises	Week Due	Contact Hours
1	NONE		
2			
Number	of Weeks /and Contact Hours Per Semester		

Teaching Strategies:

Lectures, Seminars, Project Supervision,

Self-Learning,

Case Study,

Simulation Exercises,

Dissertation Defenses and Presentation,

Independent Study,

Analysis and Problem Solving,

Brainstorming,

Presenting Researches,

Presentations,

Group/Individual Projects and Studies,

Active learning.

Assessment Methods of the Course:

Oral & Writing Exams

Reports,

Survey,

Written Exam,

Assignments

Seminar Report,

Written Research Proposal.

lo	Assignments	Individual /Groups	Mark	Week Due
	Assignments:			
	RM Programming & Interfacing and ARM Interrupts Mechanism			
	mbedded Systems Serial Communication	Individual	10	5 th , 10 th , 10 th & 12 th
	Cmbedded Systems Software & ROS			
	Assignment 4: SoC Design & Implementation using VHDL			
2	Mini/Major Project:			
	Graduates works and submit their individual & group Projects using Web searching, High-Level Programming to design and implement ESs & SoC products.	Individual/ Group	16	From the 4 th to 14 th
3	Papers presentation & Case studies	Individual/ Group	8	Work from the 4 th to 14 th week
	Total Score		34	

Learning Assessment:				
No	Assessment Method	Week Due	Mark	Proportion of Final Assessment %
1	Tasks and Assignments	4 th to 14 th	34	34%
2	Quizzes	6 th & 12 th	6	6%
3	Midterm Exam	8 th	20	20%
4	Final Exam (Theoretical)	16 th	40	40%
	Total		100	100 %

Learning Resources:

Required Textbook(s):

Joseph Yiu, 2014, "The Definitive Guide to the ARM Cortex-M3 and Cortex-M4 Processors", Newnes, 3rd Ed.

James K Peckol, 2019, "Embedded Systems – A contemporary Design Tool", 2nd Ed, Weily-Blackwell.

David. A.Patterson & John L. Hennessy, 2020, "Computer Organization and Design RISC-V the

Hardware Software Interface", 1st Edition, Morgan Kaufmann.

Essential References:

Shibu K V, 2009, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited.

F. Vahid, Tony D Givargis, 2001, "Embedded System Design – A unified hardware and software introduction", 1st Ed. Wiley)

Electronic Materials and Web Sites etc.

Websites:

Syllabus, lecture notes and other materials can be found at

http://www.iyte.edu.tr/~tolgaayav/courses/ceng563

To access some papers with codes

http://www.githup.com

Journals:

Enquire the search engines by sub-topic mentioned in the course plan to get accurate and up-to-date information.

IEEE Publisher

https://www.ieee.org

Elsevier Publisher

https://www.elsevier.org

Science Direct Publisher

https://www.Sciencedirect.com

Course Policiesالضوابط والسياسات المتبعة في المقرر	
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتى:	
Class Attendance: سياسة حضور الفعاليات التعليمية	1
يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك.	
يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم	
اقرار الحرمان من مجلس القسم.	
Tardy: الحضور المتأخر	2
يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات	
يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
Exam Attendance/Punctuality: ضوابط الامتحان	3
لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان -	
إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
Assignments & Projects: التعيينات والمشاريع	4
يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها.	
إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.	
Cheating:	5

6
7
/
-