<u>Course Specification of</u>: Applied Cryptography & Network Security

Course Code (CCE556)

IV.	7. General Information About the Course:						
	Course Title:	pplied Ci	ryptography &	Network Security			
	Course Code and Number:	CCE	556				
		Credit	Credit Hours				
	Credit Hours:	ecture	eminar/Tutorial	Total			
		3			3		
	Study Level and Semester:	nd Seme	ster	•			
	Pre-requisites (if any):						
	Co-requisites (if any):						
	Program (s) in which the course is offered:	Л. Sc. in	<i>I</i> . Sc. in Computer Engineering & Control				
	Language of teaching the course:	Inglish					
	Study System:	Courses &	& Thesis				
	Prepared By:	Assoc. Pr	ssoc. Prof. Dr. Farouk Al-Fahaidy				
	Reviewed by:	rof. Dr.	rof. Dr. Khalil Al-Wagih				
	Date of Approval:						

V. Course Description:

This course provides a deep knowledge in advanced concepts, theories, algorithm and protocols applied in data and network security. Course covers, an overview on Applied Cryptography, Classical Ciphers, Symmetric Ciphering, Public key encryption, differential and linear cryptanalysis, hash functions, authentication protocols, key distribution protocols, key management, security protocol pitfalls, and Internet cryptography protocols such as, IP sec., SSL/TLS and e-mail security. It also focuses on development the student's skills in applying and implementing variety of cryptographic techniques in practicing to solve the data security to different environments.

VI. Course Intended Learning Outcomes (CILOs):

Upon successful completion of **Applied Cryptography & Network Security Course**, the graduates will be able to:

Demonstrate deep understanding of advanced concepts, theories, algorithms and protocols related to applied cryptography & Networks security.

Explain advanced numbers theories, modern cryptographic algorithms, IT frameworks and authentication protocols such as, hash functions and their practicing to the data and networks security.

solve environmental problems related to data and networks security using appropriate encryption, authentication & integrity algorithms and computer programming to meet desired domain specifications and constraints.

Propose innovative computational methods for solving problems related to cryptography after assessing applicable methods and their limits.

Develop computer programs for implementing of different cryptographic algorithms and protocols.

Use an appropriate cryptographic algorithm and protocol to protect an individual and organization information security properties during storing, processing and transmission.

Present a high level of skills in writing, presenting and defending research/project activities throughout individual and team course works.

Function effectively either individually or within a team to complete course projects.

VII. Alignment of Course Intended Learning Outcomes (CILOs) to Program Intended Learning Outcomes (PILOs)

CILOs	PILOs	
n. Knowledge and Understanding: Upon	I. Knowledge and Understanding:	
successful completion of the Applied	Upon successful completion of the M. Sc.	
Cryptography & Network Security Course,	In Computer Engineering & Control	
the graduates will be able to:	Program , the graduates will be able to:	
Demonstrate deep understanding of	Demonstrate deep understanding of	
advanced concepts, theories, algorithms	computer engineering and control as well as	
and protocols related to applied	knowledge of applied mathematics and	
cryptography & Networks security.	engineering science to the field of	
	computing and intelligent control.	
Explain advanced numbers theories,	A2. Recognize and Explain the	
modern cryptographic algorithms, IT	contemporary engineering technologies and	
frameworks and authentication protocols	issues in the specialization field of	
such as, hash functions and their	computing and control.	
practicing to the data and networks		
security.		
. Cognitive/ Intellectual Skills: Upon successful	I. Cognitive/ Intellectual Skills: Upon	
completion of the Applied Cryptography &	successful completion of the M. Sc. In	
Network Security Course, the graduates will be	Mechanical Engineering Program, the	
able to:	graduates will be able to:	
solve environmental problems related	1. Evaluate, select and apply appropriate	
to data and networks security using	principles, methodologies, techniques, tools	
appropriate encryption,	and packages to the analysis, specification,	
authentication & integrity algorithms	development and evaluation of computing	
and computer programming to meet	and engineering systems.	
desired domain specifications and		
constraints.		
Propose innovative computational	3. Propose computing system, component, or	
methods for solving problems related to	process to meet desired needs within	
cryptography after assessing applicable	realistic constraints.	
methods and their limits.		

. Professional and Practical Skills: Upon). Professional and Practical Skills: Upon	
successful completion of the Applied	successful completion of the M. Sc. In	
Cryptography & Network Security Course,	Computer Engineering & Control	
the graduates will be able to:	Program , the graduates will be able to:	
Develop computer programs for	1. Develop, configure, upgrade, and/or write	
implementing of different cryptographic	computer software/program to solve	
algorithms and protocols.	computing and control problems.	
Use an appropriate cryptographic	2. Use advanced methodology and skills to	
algorithm and protocol to protect an	the formulation and practice of computer	
individual and organization information	science, engineering and control systems.	
security properties during storing,		
processing and transmission.		
. Transferable Skills: Upon successful	. Transferable Skills: Upon successful	
• Transferable Skills: Upon successful completion of the Applied Cryptography &	• Transferable Skills: Upon successful completion of the M. Sc. In Computer	
 Transferable Skills: Upon successful completion of the Applied Cryptography & Network Security Course, the graduates will be 	 Transferable Skills: Upon successful completion of the M. Sc. In Computer Engineering & Control Program, the 	
 Transferable Skills: Upon successful completion of the Applied Cryptography & Network Security Course, the graduates will be able to: 	 Transferable Skills: Upon successful completion of the M. Sc. In Computer Engineering & Control Program, the graduates will be able to: 	
•. Transferable Skills: Upon successful completion of the Applied Cryptography & Network Security Course, the graduates will be able to: Demonstrate a high level of skills in	 Transferable Skills: Upon successful completion of the M. Sc. In Computer Engineering & Control Program, the graduates will be able to: Prepare complete thesis and reports, present 	
•. Transferable Skills: Upon successful completion of the Applied Cryptography & Network Security Course, the graduates will be able to: Demonstrate a high level of skills in writing, presenting and defending	 Transferable Skills: Upon successful completion of the M. Sc. In Computer Engineering & Control Program, the graduates will be able to: Prepare complete thesis and reports, present ideas clearly and defend them. 	
•. Transferable Skills: Upon successful completion of the Applied Cryptography & Network Security Course, the graduates will be able to: Demonstrate a high level of skills in writing, presenting and defending research/project activities throughout	 Transferable Skills: Upon successful completion of the M. Sc. In Computer Engineering & Control Program, the graduates will be able to: Prepare complete thesis and reports, present ideas clearly and defend them. 	
•. Transferable Skills: Upon successful completion of the Applied Cryptography & Network Security Course, the graduates will be able to: Demonstrate a high level of skills in writing, presenting and defending research/project activities throughout individual and team course works.	 Transferable Skills: Upon successful completion of the M. Sc. In Computer Engineering & Control Program, the graduates will be able to: Prepare complete thesis and reports, present ideas clearly and defend them. 	
•. Transferable Skills: Upon successful completion of the Applied Cryptography & Network Security Course, the graduates will be able to: Demonstrate a high level of skills in writing, presenting and defending research/project activities throughout individual and team course works. Function effectively either individually or	 Transferable Skills: Upon successful completion of the M. Sc. In Computer Engineering & Control Program, the graduates will be able to: Prepare complete thesis and reports, present ideas clearly and defend them. Conduct independently and communicate 	
•. Transferable Skills: Upon successful completion of the Applied Cryptography & Network Security Course, the graduates will be able to: Demonstrate a high level of skills in writing, presenting and defending research/project activities throughout individual and team course works. Function effectively either individually or within a team to complete course projects	 Transferable Skills: Upon successful completion of the M. Sc. In Computer Engineering & Control Program, the graduates will be able to: Prepare complete thesis and reports, present ideas clearly and defend them. Conduct independently and communicate research that advances and extends 	
•. Transferable Skills: Upon successful completion of the Applied Cryptography & Network Security Course, the graduates will be able to: Demonstrate a high level of skills in writing, presenting and defending research/project activities throughout individual and team course works. Function effectively either individually or within a team to complete course projects works.	 Transferable Skills: Upon successful completion of the M. Sc. In Computer Engineering & Control Program, the graduates will be able to: Prepare complete thesis and reports, present ideas clearly and defend them. Conduct independently and communicate research that advances and extends computing knowledge and scholarship in 	

7 111. A	III. Alignment of CILOs to Teaching and Assessment Strategies					
. Aligr	Alignment of Knowledge and Understanding CILOs:					
Know	ledge and Understanding CILOs	Teaching Strategies	Assessment Strategies			
a1.	Demonstrate deep understanding of	Lectures,	Oral & Writing Exams			
	advanced concepts, theories,	Self-Learning	Written Exam,			
	algorithms and protocols related to	Problems/Studies.	Assignments.			
	applied cryptography & Networks					
	security.					

	Explain advanced numbers theories.	Lectures.	Oral & Writing Exams
	modern cryptographic algorithms. IT	Seminars.	Reports.
	frameworks and authentication	Group/Individual	Written Exam
	nrotocols such as hash functions and	Projects and Studies	Assignments
	their practicing to the data and	Active learning	Tibliginionit
	networks security	neuve learning.	
Aligr	ment of Intellectual Skills CII Os:		
Intollo	actual Skills CILOs	Tooshing Strategies	Assessment
Intene		reaching strategies	Assessment
h1	solve environmental problems	Lectures	Oral & Writing
01.	solve environmental problems	Project Supervision	Exams
	related to data and networks	Solf Learning	Deports
	security using appropriate	Sen-Learning,	Surgeons,
	encryption, authentication &	Case Study,	Survey,
	integrity algorithms and computer	Simulation Exercises,	Written Exam,
	programming to meet desired	Independent Study,	Assignments
	domain specifications and	Analysis and Problem	
	constraints	Solving,	
	constraints.	Presentations,	
b2.	Propose innovative computational	Lectures,	Oral & Writing
	methods for solving problems related	Project Supervision,	Exams
	to cryptography after assessing	Self-Learning,	Reports,
	applicable methods and their limits.	Case Study,	Survey,
		Simulation Exercises,	Written Exam,
		Independent Study,	Assignments
		Analysis and Problem	
		Solving,	
		Presentations,	
Aligr	ment of Professional and Practical Sk	ills CILOs:	
Profes	ssional and Practical Skills CILOs	Teaching Strategies	Assessment Strategies
	Develop computer programs for	Lectures,	Oral & Writing
	implementing of different	Project Supervision,	Exams
	cryptographic algorithms and	Self-Learning,	Seminar Report,
	protocols.	Case Study,	Assignments,
		Simulation Exercises,	Written Research
		Independent Study,	Proposal.
		Analysis and Problem	
		Solving,	
<u> </u>		~ ··	

	-			
	Presentations,			
Use an appropriate cryptographic	Lectures,	Oral & Writing		
algorithm and protocol to protect an	Project Supervision,	Exams		
individual and organization	Self-Learning,	Seminar Report,		
information security properties	Case Study,	Assignments,		
during storing, processing and	Simulation Exercises,	Written Research		
transmission.	Independent Study,	Proposal.		
	Analysis and Problem			
	Solving,			
	Presentations,			
Alignment of Transferable (General) Skills CILOs:				
Transferable (General) Skills CILOs	Teaching Strategies	Assessment Strategies		
Demonstrate a high level of skills	Dissertation Defenses and	Written Research		
in				
in writing, presenting and	Presentation,	Proposal,		
defending research/project	Independent Study,	Proposal, Assignments,		
defending research/project activities throughout individual	Presentation, Independent Study, Presentation,	Proposal, Assignments, Presentation,		
defending research/project activities throughout individual and team course works	Presentation, Independent Study, Presentation, Brainstorming,	Proposal, Assignments, Presentation, Written Report.		
defending research/project activities throughout individual and team course works.	Presentation, Independent Study, Presentation, Brainstorming, Presenting Researches.	Proposal, Assignments, Presentation, Written Report.		
in writing, presenting and defending research/project activities throughout individual and team course works. Function effectively either	Presentation, Independent Study, Presentation, Brainstorming, Presenting Researches. Dissertation Defenses and	Proposal, Assignments, Presentation, Written Report. Written Research		
in writing, presenting and defending research/project activities throughout individual and team course works. Function effectively either individually or within a team to	Presentation, Independent Study, Presentation, Brainstorming, Presenting Researches. Dissertation Defenses and Presentation,	Proposal, Assignments, Presentation, Written Report. Written Research Proposal,		
in writing, presenting and defending research/project activities throughout individual and team course works. Function effectively either individually or within a team to complete course projects.	Presentation, Independent Study, Presentation, Brainstorming, Presenting Researches. Dissertation Defenses and Presentation, Independent Study,	Proposal, Assignments, Presentation, Written Report. Written Research Proposal, Assignments,		
In writing, presenting and defending research/project activities throughout individual and team course works. Function effectively either individually or within a team to complete course projects.	Presentation, Independent Study, Presentation, Brainstorming, Presenting Researches. Dissertation Defenses and Presentation, Independent Study, Presentation,	Proposal, Assignments, Presentation, Written Report. Written Research Proposal, Assignments, Presentation,		
In writing, presenting and defending research/project activities throughout individual and team course works. Function effectively either individually or within a team to complete course projects.	Presentation, Independent Study, Presentation, Brainstorming, Presenting Researches. Dissertation Defenses and Presentation, Independent Study, Presentation, Brainstorming,	Proposal, Assignments, Presentation, Written Report. Written Research Proposal, Assignments, Presentation, Written Report.		

IX. Course Content					
. Theoret	ical Aspect				
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs

	Introduction to	Cryptography and Network Security: history,			
		classifications and		3	a1,
1	Cryptography and	applications,	1		a2
	Network Security	Computer & Network			
		Security Concepts &			
		Terminologies.			
		Symmetric/Private-Key			
		Ciphering Model &			
		Concepts,			
		Classical Ciphers			a1,
2	Classical Ciphering	Techniques: such as Caesar,	1	3	a2,
	Algorithms	Playfair, transposition and			b 1
		Vegner Table,			~ _
		Attackers types and			
		ciphering analysis.			
		Block Ciphers: Data			
		Encryption Standard (DES)			a1,
	Symmetric Ciphers	Block Cipher Design			a2,
3	(DEC)	Principles and Key	1	3	b1 ,
	(DES)	Generation,			b2,
		A DES Example			c2
		The Strength of DES.			-
		Einita Eialde: Groups Rings			
		and Eielde			
		Einite Eields of the Form			a1,
Λ	Basic Number	GE(n) Greatest Common	1	2	a)
T	Theory	Divisor (GCD) Fuclidean	-	5	α ε ,
		Distance and Extended			DI
		Fuclidean Distance			

		Algorithms, Finite Field Arithmetic, Addition, Multiplication & Inverse, Polynomial Arithmetic and Finite Fields, GF(2 ⁿ). AES Structure, AES Transformation			
5	Advanced Encryption Standard (AES) and Modes of Operations	 AES Transformation Functions, AES Key Expansion, AES Example, AES Implementation, Block & Stream Ciphers Operations: Multiple Encryption and Triple DES, Electronic Code Block, Cipher Block Chaining Mode, Cipher Feedback Mode, Output Feedback Mode, Counter Mode, XTS-AES Mode for Block- oriented Storage Devices. 	2	6	a1, a2, b1, b2, c2
6	Pseudorandom Number Generation and Stream Ciphers	 Principles of Pseudorandom Number Generation, Block Cipher Vs. Stream Cipher, Pseudorandom Generation using a Block Cipher, Stream Ciphers: Concepts 	1	3	a1, a2, b1

		and Operations			
		RC4 Algorithm.			
7	Midterm Exam	Midterm Exam include ALL Previous Topics	1	3	a1, a2, b1, b2, c2
8	Asymmetric/Public- Key Ciphering Algorithms	Prime Numbers and Euler'sTheorem,Asymmetric/Public-KeyCryptography Model,Principles of Public-KeyCryptosystems,The RSA Algorithm.Diffie-Hellman KeyExchange,Elgamal CryptographicSystem,Elliptic Curve Algorithm.	2	6	a1, a2, b1, b2, c2
9	Cryptographic Data Integrity Functions & Codes	Cryptographic Hash Functions and their Applications, Hash Functions based on Cipher Block Chaining, Secure Hash Algorithm (SHA) and SHA-3, Message Authentication: Requirements & Functions, Message Authentication Codes (MACs) Requirements & Security,	2	6	a2, b1, b2, c2

10	Mutual Trust: Key Management & Distribution	MACs Based on Hash Functions (HMAC), MACs Based on Block Ciphers (DAA & CMAC), Digital Signatures Principles and Applied Digital Signature Schemes such as Elgmal, NIST, Elliptic-Curve and RSA-PSS. Symmetric Key Distribution using Symmetric/Asymmetric Encryptions, Distribution of Public Keys, X.509 Certificates, Remote User- Authentication Principles, Federated Identity	1	3	a2, b1, b2, c2
		Managements and Personal Identity Verification. Network Security Concepts & Requirements			
11	Network Security Protocols	IPSec Protocol: Headers, Structures and Modes. SSL/STL Security Protocols, New Trends in Network and Cyber Securities.	1	3	b1, b2, c2

12	Case Studies & Course Projects Presentation	Students Presents in an individual and in Groups their course Projects, Programming Implementation and Paper Presentations works.	1	3	a2, b1, b2, c1, c2, d1, d2
13	Final Exam	ALL Topics Except the Case Study & Course Project works.	1	3	a1, a2, b1, b2, c1, c2
Number	Number of Weeks /and Contact Hours Per Semester			48	

. Practic	. Practical Aspect					
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs		
1	NONE					
2						
Number o	of Weeks /and Contact Hours Per Semester					

. Tutorial Aspect:

No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)
1	NONE			
2				
Num	ber of Weeks /and Units Per Semester	15	30	

. Teaching Strategies:

Lectures,

Seminars,

Project Supervision,

Self-Learning,

Case Study,

Simulation Exercises,

Dissertation Defenses and Presentation,

Independent Study,

Analysis and Problem Solving,

Brainstorming,

Presenting Researches,

Presentations,

Group/Individual Projects and Studies,

Active learning.

Assessment Methods of the Course:

Oral & Writing Exams

Reports,

I.

Survey,

Written Exam,

I. Assessment Methods of the Course:

Assignments

Seminar Report,

Written Research Proposal.

Ι. ΄	I. Tasks and Assignments:						
No	Assignments/ Tasks	Individual/ Group	Mark	Week Due	CILOs (symbols)		
1	Assignments:Assignment 1: Implementation of Classical Ciphering Techniques using ProgrammingAssignment 2: Implementation of DES Algorithm using ProgrammingAssignment 3: Implementation of DES Algorithm using ProgrammingAssignment 4: Implementation of different Public-Key Ciphering Algorithm, Hash Functions & Authentication Techniques using Programming	Individual	10	4 th , 7 th , 10 th & 13 th	a1, a2, b1, b2, c1, c2, d1, d2		
2	Mini/Major Project: Graduates works and submit their individual & group Projects by searching Webs, using modern Programming Language to solve different domain problems related to data and networks Security.	Individual/ Group	16	From the 4 th to 14 th	a1, a2, b1, b2, c1, c2, d1, d2		

3	Papers presentation & Case studies	Individual/ Group	8	Work from the 4 th to 14 th weeks	a2, b1, b2, c1, c2, d1, d2
	Total Score		34	==	

II. I	Learning Assessment:		_		
No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment	CILOs
1	Tasks and Assignments	4 th to 14 th	34	34%	a1, a2, b1, b2, c1, c2,
2	Quizzes	6 th & 12 th	6	6%	a1, a2, b1, b2
3	Midterm Exam	8 th	20	20%	a1, a2, b1, b2_c2
4	Final Exam (Theoretical)	16 th	40	40%	a1, a2, b1, b2, c2
	Total			100%	===

V. Learning Resources:

0.Required Textbook(s):

William Stallings, 2020, Cryptography and Network Security Principles and Practice, 8th Edition, USA, Pearson, ISBN 13: 9780135764039.

Behrouz A. Forouzan, 2015, "Cryptography & Network Security", McGraw-Hill Education, 3rd edition, India, ISBN-13 9789339220945.

I.Essential References:

Kenneth H. Rosen, Ph,D., 2006, Cryptography Theory and Practice, 3rd Edition, Taylor and

Francis Group, LLC, USA.

Atul Kahata, 2003, Cryptography and network security, 1st ed., tata megraw.

Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, 1996, Handbook of Applied

Cryptography.

2. Electronic Materials and Web Sites etc.

Websites:

To access Text Book, the Cryptography and Network Security: Principles and Practice, Sixth Edition, Premium Web site for the first time, you will need to register online using a computer with an Internet connection and a web browser.

Go to http://www.pearsonhighered.com/stallings/

To access some papers with codes

http://www.githup.com

Sample Course on Data & Network Security:

http://www.just.edu.jo/~tawalbeh/

Journals:

Enquire the search engines by sub-topic mentioned in the course plan to get accurate and up-todate information.

IEEE Publisher

https://www.ieee.org

Elsevier Publisher

https://www.elsevier.org

Science Direct Publisher

https://www.Sciencedirect.com

Course Policies الضوابط والسياسات المتبعة في المقرر

بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:

Class Attendance:سياسة حضور الفعاليات التعليمية

يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك.

يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم اقرار الحرمان من مجلس القسم. 1

2

3

4

5

6

7

Tardy: الحضور المتأخر

يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات

يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.

فوابط الامتحان Exam Attendance/Punctuality:

لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان

إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية.

Assignments & Projects: التعيينات والمشاريع

يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها. إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.

:Cheatingالغش

في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب.

في حال ثبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.

:Plagiarism الانتحال

في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك

Other policies: سياسات أخرى

أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ

Course Plan (Syllabus): Applied Cryptography & Network Security

Information about Faculty Member Responsible for the Course:								
Name	Farouk Al-Fahaidy	Office	Hours					
Location &Telephone No.	777909815	SAT	SUN	MON	TUE	WED	THU	
E-mail	farouqakh@gmail.com							

6	General information about the course:							
.	Course Title	Applied	Applied Cryptography & Network Security					
).	Course Code and Number	CCE556	CCE556					
		Credit Hours		Credit Hours				
).	Credit Hours	lecture	Practical	eminar/Tutorial				
		3			3			
. •	Study Level and Semester	nd Semester						
2.	Pre-requisites							
	Co –requisite							
	Program (s) in which the course is offered	1. S. in Computer Engineering & Control Program						
5.	Language of teaching the course	English						
	Location of teaching the course							

Course Description:

This course provides a deep knowledge in advanced concepts, theories, algorithm and protocols applied in data and network security. Course covers, an overview on Applied Cryptography, Classical Ciphers, Symmetric Ciphering, Public key encryption, differential and linear cryptanalysis, hash functions, authentication protocols, key distribution protocols, key management, security protocol pitfalls, and Internet cryptography protocols such as, IP sec., SSL/TLS and e-mail security. It also focuses on development the students skills in applying and implementing variety of cryptographic techniques in practicing to solve the data security to different environments.

Course Intended Learning Outcomes (CILOs):

Upon successful completion of the **Applied Cryptography & Network Security** course, graduate students will be able to:

Demonstrate deep understanding of advanced concepts, theories, algorithms and protocols related to applied cryptography & Networks security.

Explain advanced numbers theories, modern cryptographic algorithms, IT frameworks and authentication protocols such as, hash functions and their practicing to the data and networks security.

olve environmental problems related to data and networks security using appropriate encryption, authentication & integrity algorithms and computer programming to meet desired domain specifications and constraints.

Propose innovative computational methods for solving problems related to cryptography after assessing applicable methods and their limits.

Develop computer programs for implementing of different cryptographic algorithms and protocols.

Use an appropriate cryptographic algorithm and protocol to protect an individual and organization information security properties during storing, processing and transmission.

Present a high level of skills in writing, presenting and defending research/project activities throughout individual and team course works.

d2. Function effectively either individually or within a team to complete course projects.

Course Content							
Theoret	Theoretical Aspect						
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours			
1	Introduction to Cryptography and Network Security	 Cryptography and Network Security: history, classifications and applications, Computer & Network Security Concepts & Terminologies. 	1	3			
2	Classical Ciphering Algorithms	Symmetric/Private-Key Ciphering Model & Concepts, Classical Ciphers Techniques: such as Caesar, Playfair, transposition and Vegner Table, Attackers types and ciphering analysis.	1	3			
3	Symmetric Ciphers (DES)	Block Ciphers: Data Encryption Standard (DES): Block Cipher Design Principles and Key Generation, A DES Example: The Strength of DES.	1	3			

4	Basic Number Theory	 Finite Fields: Groups, Rings and Fields, Finite Fields of the Form GF(p), Greatest Common Divisor (GCD), Euclidean Distance and Extended Euclidean Distance Algorithms, Finite Field Arithmetic, Addition, Multiplication & Inverse, Polynomial Arithmetic and Finite Fields, GF(2ⁿ). 	1	3
5	Advanced Encryption Standard (AES) and Modes of Operations	 AES Structure, AES Transformation Functions, AES Key Expansion, AES Example, AES Implementation, Block & Stream Ciphers Operations: Multiple Encryption and Triple DES, Electronic Code Block, Cipher Block Chaining Mode, Cipher Feedback Mode, Output Feedback Mode, Counter Mode, XTS-AES Mode for Block-oriented Storage Devices. 	2	6
6	Pseudorandom Number Generation and Stream Ciphers	 Principles of Pseudorandom Number Generation, Block Cipher Vs. Stream Cipher, Pseudorandom Generation using a Block Cipher, Stream Ciphers: Concepts and 	1	3

		Operations		
		RC4 Algorithm.		
		Midterm Exam include ALL		
7	Midterm Exam	Previous Topics	1	3
		Prime Numbers and Euler's		
		Theorem,		
		Asymmetric/Public-Key		
	Asymmetric (Dublic	Cryptography Model,		
	Asymmetric/Public-	Principles of Public-Key		
8	Key Ciphering	Cryptosystems,	2	6
	Algorithms	The RSA Algorithm.		
		Diffie-Hellman Key Exchange,		
		Elgamal Cryptographic System,		
		Elliptic Curve Algorithm.		
		Cryptographic Hash Functions and		
		their Applications,		
		Hash Functions based on Cipher		
		Block Chaining,		
		Secure Hash Algorithm (SHA) and		
		SHA-3,		
		Message Authentication:		
	Cryptographic Data	Requirements & Functions,		
9	Integrity Functions	Message Authentication Codes	2	6
	& Codes	(MACs) Requirements & Security,		
		MACs Based on Hash Functions		
		(HMAC),		
		MACs Based on Block Ciphers		
		(DAA & CMAC),		
		Digital Signatures Principles and		
		Applied Digital Signature Schemes		
		such as Elgmal, NIST, Elliptic-		
	l	l		

		Curve and RSA-PSS.		
10	Mutual Trust: Key Management & Distribution	Symmetric Key Distribution using Symmetric/Asymmetric Encryptions, Distribution of Public Keys, X.509 Certificates, Remote User-Authentication Principles, Federated Identity Managements and Personal Identity Verification.	1	3
11	Network Security Protocols	Network Security Concepts & Requirements, IPSec Protocol: Headers, Structures and Modes. SSL/STL Security Protocols, New Trends in Network and Cyber Securities.	1	3
12	Case Studies & Course Projects Presentation	Students Presents in an individual and in Groups their course Projects, Programming Implementation and Paper Presentations works.	1	3
13	Final Exam	ALL Topics Except the Case Study & Course Project works.	1	3
Number o	of Weeks /and Contact Hours F	Per Semester	16	48

Practical Aspect					
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs	
1	. NONE				
Number of Weeks /and Contact Hours Per Semester					

Training/ Tutorials/ Exercises Aspects:			
Order	Tutorials/ Exercises	Week Due	Contact Hours
1	NONE		
2			
Number of Weeks /and Contact Hours Per Semester			

Teaching Strategies:

Lectures,

Seminars,

Project Supervision,

Self-Learning,

Case Study,

Simulation Exercises,

Dissertation Defenses and Presentation,

Independent Study, Analysis and Problem Solving, Brainstorming, Presenting Researches, Presentations, Group/Individual Projects and Studies, Active learning.

Assessment Methods of the Course:

Oral & Writing Exams

Reports,

Survey,

Written Exam,

Assignments

Seminar Report,

Written Research Proposal.

I.Tasks and Assignments:				
No	Assignments	Individual /Groups	Mark	Week Due
1	Assignments: Assignment 1: Implementation of Classical Ciphering Techniques using Programming Assignment 2: Implementation of DES Algorithm using Programming	Individual	10	4 th , 7 th , 10 th & 13 th

	Assignment 3: Implementation of DES Algorithm using Programming			
	Assignment 4: Implementation of different Public-			
	Key Ciphering Algorithm, Hash Functions &			
	Authentication Techniques using Programming			
2	Mini/Major Project:			
	Graduates works and submit their individual & group Projects by searching Webs, using modern Programming Language to solve different domain	Individual/ Group	16	From the 4 th to 14 th
	problems related to data and networks Security.			
3	Papers presentation & Case studies	Individual/ Group	8	Work from the 4 th to 14 th weeks
	Total Score		34	

Learning Assessment:				
No	Assessment Method	Week Due	Mark	Proportion of Final Assessment %
1	Tasks and Assignments	4 th to 14 th	34	34%
2	Quizzes	6 th & 12 th	6	6%
3	Midterm Exam	8 th	20	20%
4	Final Exam (Theoretical)	16 th	40	40%
	Total		100	100 %

Learning Resources:

. Required Textbook(s):

William Stallings, 2020, Cryptography and Network Security Principles and Practice, 8th Edition, USA, Pearson, ISBN 13: 9780135764039.

Behrouz A. Forouzan, 2015, "Cryptography & Network Security", McGraw-Hill Education, 3rd

edition, India, ISBN-13 9789339220945.

Essential References:

Kenneth H. Rosen, Ph,D., 2006, Cryptography Theory and Practice, 3rd Edition, Taylor and Francis Group, LLC, USA.

Atul Kahata, 2003, Cryptography and network security, 1st ed., tata megraw.

Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, 1996, Handbook of Applied

Cryptography.

Electronic Materials and Web Sites etc.

Websites:

To access Text Book, the Cryptography and Network Security: Principles and Practice, Sixth

Edition, Premium Web site for the first time, you will need to register online using a computer with an Internet connection and a web browser.

Go to http://www.pearsonhighered.com/stallings/

To access some papers with codes

http://www.githup.com

Sample Course on Data & Network Security:

http://www.just.edu.jo/~tawalbeh/

Journals:

Enquire the search engines by sub-topic mentioned in the course plan to get accurate and up-todate information.

IEEE Publisher

https://www.ieee.org

Elsevier Publisher

https://www.elsevier.org

Science Direct Publisher

https://www.Sciencedirect.com

Course Policiesالضوابط والسياسات المتبعة في المقرر	
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتى:	
Class Attendance: سياسة حضور الفعاليات التعليمية	1
يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك.	
يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم	
اقرار الحرمان من مجلس القسم.	
الحضور المتأخر_	2
يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات	
يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
Exam Attendance/Punctuality: ضوابط الامتحان	3
لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان -	
إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
Assignments & Projects: التعيينات والمشاريع	4
يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها.	
إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.	
Cheating: الغش	5
في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب.	
في حال ثبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.	
الانتحال Plagiarism:	6
في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك -	
Other policies: سیاسات أخری	7
أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ	

