<u>1-</u> <u>Course Specification of Advanced Engineering Mathematics</u> Course Code (ME501)

•	General Information About the	Course	•		
1.	Course Title:	Advanced Engineering Mathematics			
2.	Course Code and Number:	ME501			
			Credit	Hours	Total
3.	Credit Hours:	Lecture	Practical	Seminar/Tutorial	Total
		3			3
4.	Study Level and Semester:	1 st Level /	1 st Semester	ſ	
5.	Pre-requisites (if any):	ME502			
6.	Co-requisites (if any):	None			
7.	Program (s) in which the course is offered:	MSc. In Mechanical Engineering Program			
8.	Language of teaching the course:	English			
9.	Study System:	Courses &	z Thesis		
10.	Prepared By:	Dr. Adnan Al-Salihi			
11.	Reviewed by:	Dr			
12.	Date of Approval:				

• Course Description:

The objective of this course is to study in-depth and applications of the advance mathematics that will be used for solving mathematical problems that arise in science and engineering. Topics include: Fourier Analysis, Orthogonal Functions and Partial Differential Equations (PDE) with application on Heat, Wave and Laplace equations, Complex Numbers and Functions, Complex Integration, Power Series, Taylor Series, Laurant Series and Residue Integration, Special Linear Fractional Transformations, Complex Analysis to Potential Theory. introduction to numerical analysis include approximations of functions, systems of ordinary differential equations, eigenvalue/eigenvector problems, optimization, partial differential equations.

• Course Intended Learning Outcomes (CILOs):

Upon successful completion of Advanced Solid Mechanics and Engineering Materials Course, the graduates will be able to:

- a1. **Demonstrate an advanced concepts and knowledge of** Partial differential equations, integral transforms, complex Integration, and Residue Integration, as well as to complex Analysis to Potential Theory.
- **a2. Introduce** the concepts and mathematical methods to understand and analyze mechanical engineering fields.
- **a3.** Select appropriate mathematical methods for solve a engineering problems governing by partial differential equations, as well as analyze, interpret the results and predict behavior.
- **b1. Construct** the mathematical models through differential equations and associated analytical and numerical methods to solve various computational problems related to mechanical and interpret the results.
- **b2 Develop** fundamental skills to complex variable analysis and apply it in solving differential equations through Laplace transform.

- c1. Apply the different mathematical tasks for mechanical problems as well as analyze, interpret and predict behavior.
- **c2.** Use Laplace and Fourier transforms, complex analysis, numerical methods and modern. computational tools to analysis a given solid mechanics problem.
- **d1.** Effectively manage tasks, time, and resources.
- **d2.** Communicate and work effectively in group and individually.

	lignment of Course Intended rogram Intended Learning Outco	Learning Outcomes (CILOs) to mes (PILOs)		
	CILOs	PILOs		
succ Mec	wledge and Understanding: Upon essful completion of Advanced Solid chanics and Engineering Materials Course, graduates will be able to:	• Knowledge and Understanding: Upon successful completion of the MSc. In Mechanical Engineering Program, the graduates will be able to:		
a1.	Demonstrate an advanced concepts and knowledge of Partial differential equations, integral transforms, complex Integration, and Residue Integration, as well as to complex Analysis to Potential Theory.	A1. Acquire advanced concepts and knowledge of mathematics, scientific, mechanical engineering and associated technologies as well as across the boundaries of interdisciplinary disciplines.		
		A2. Identify and critically evaluate contemporary engineering technologies, current developments and emerging trends within the mechanical engineering contexts.		
a2. a3.	 Introduce the concepts and mathematical methods to understand and analyze mechanical engineering fields. Select appropriate mathematical methods for solve a engineering problems governing by partial differential equations, as well as analyze, interpret the results and predict behavior. 	A3. Provide a holistic description of principles, concepts, approaches, techniques and analysis tools to design and development of existing and novel mechanical systems, while taking a sustainable and environmentally-friendly approach.		
com and	0 0 /	• Cognitive/ Intellectual Skills: Upon successful completion of the MSc. In Mechanical Engineering Program, the		
grad	uates will be able to:	graduates will be able to:B1. Identify and apply specialized knowledge and skills to solve problems that are critical to future growth of industry and business.		
b1.	Construct the mathematical models through differential equations and associated analytical and numerical	B2. Creatively thinking and apply analysis tools to formulate and solve complex engineering problems in the mechanical engineering context using modern techniques		

	methods to solve various computational problems related to mechanical and interpret the results.	and tools.
b2.	Develop fundamental skills to complex variable analysis and apply it in solving differential equations through Laplace transform.	B3. Design and optimize mechanical components, systems and process to meet desired needs within realistic constraints.
b4.		B4. Analyze and assess risks of the professional practice in the mechanical engineering contexts.
	fessional and Practical Skills: Upon	• Professional and Practical Skills: Upon
	cessful completion of the Advanced Solid	successful completion of the MSc. In
	chanics and Engineering Materials Course,	Mechanical Engineering Program, the
the g	graduates will be able to:	graduates will be able to:
		C1. Use modern manufacturing processes and materials, experimental tests, appropriate software packages and other modern tools for the design analysis and manufacture of mechanical components and systems.
c1.	Apply the different mathematical tasks for mechanical problems as well as analyze, interpret and predict behavior.	C2. Conduct research and studies to solve mechanical engineering problems professionally, ethically and responsibly within realistic constraints.
c2.	Use Laplace and Fourier transforms, complex analysis, numerical methods and modern.	C3. Demonstrate an in-depth understanding of the mechanical engineering business environment, including environmental aspects, and apply quality issues, modern operations and business management techniques and good practices in a range of contexts.
. Tuo	nofemable Shiller Unon guagageful completion	- Transforchia Skiller Linen guagasful
	nsferable Skills: Upon successful completion the Advanced Solid Mechanics and	
	ineering Materials Course, the graduates	completion of the MSc. In Mechanical Engineering Program, the graduates will be
U	be able to:	able to:
will		D1. Adopt effectively IT capabilities and other different resources of information to develop a scientific research in mechanical engineering fields.
d1.	Effectively manage tasks, time, and resources.	D2. Communicate, present, challenge and defend research ideas, results and conclusions in both orally and writing forms to different audiences in contexts.
d2.	Communicate and work effectively in group and individually	D3. Identify a need for the latest relevant knowledge and technologies and undertake lifelong learning.
		D4. Collaborate effectively within multidisciplinary teams and lead them in different professional contexts

•	Alignment of Knowledge and Understan	ding CILOs:	
	Knowledge and Understanding CILOs	Teaching Strategies	Assessment Strategies
a1.	Demonstrate an advanced conceptsand knowledge of Partialdifferential equations, integraltransforms, complex Integration,and Residue Integration, as well asto complex Analysis to PotentialTheory.	 Problems/Studies, Interactive class discussions. Exercises and home 	 Oral & Writing Exams Individual Projects an Studies Reports, Assignments Home works and assignments
a2.	Introduce the concepts and mathematical methods to understand and analyze mechanical engineering fields.	 Lectures. Self-Learning Problems/Studies, Interactive class discussions. Exercises and home works. 	 Oral & Writing Exams Individual Projects an Studies Reports, Assignments Home works an assignments
a3.	Select appropriate mathematical methods for solve a engineering problems governing by partial differential equations, as well as analyze, interpret the results and predict behavior.	 Lectures. Self-Learning Problems/Studies, Interactive class discussions. Exercises and home works. 	 Oral & Writing Exams Individual Projects an Studies Reports, Assignments Home works an assignments
٠	Alignment of Intellectual Skills CILOs:		
	Intellectual Skills CILOs	Teaching Strategies	Assessment Strategie
b1.	Construct the mathematical models through differential equations and associated analytical and numerical methods to solve various computational problems related to mechanical and interpret the results.	 Lectures. Self-Learning Problems/Studies, Interactive class discussions. Exercises & home work Computer hands sessions. 	assignments
b2.	Develop fundamental skills to complex variable analysis and apply it in solving differential equations through Laplace transform.	 Lectures. Self-Learning Problems/Studies, Interactive class discussions. Exercises & home wort Computer hands sessions. 	assignments
b3.			•
b4.		•	•

	Professional and Practical Skills CILOs	Teaching Strategies	Assessment Strategies	
c1.	Apply the different mathematical tasks for mechanical problems as well as analyze, interpret and predict behavior.	 Lectures. Self-Learning Problems/Studies, Interactive class discussions. Exercises & home works Computer hands-on sessions. 	 Oral & Writing Exams Individual Projects and Studies Reports Home works and assignments 	
c2.	Use Laplace and Fourier transforms, complex analysis, numerical methods and modern. computational tools to analysis a given solid mechanics problem.	 Lectures. Self-Learning Problems/Studies, Interactive class discussions. Exercises & home works Computer hands-on sessions. 	 Oral & Writing Exams Individual Projects and Studies Reports Home works and assignments 	
•	Alignment of Transferable (General)	Skills CILOs:		
	Transferable (General) Skills CILOs	Teaching Strategies	Assessment Strategies	
d1.	Effectively manage tasks, time, and resources.	 Independent Study, Individual/Group Projects and Studies, Presentation, 	Presentation,Written Report	
d2.	Communicate and work effectively in group and individually.	 Independent Study, Individual/Group Projects and Studies, 	Presentation,Written Report.	

• Co	Course Content						
•	Theoretical Aspect						
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs		
	Fourier AnalysisFunctions. Half-Range Expansions Forced Oscillations. Approximation by Trigono Polynomials. Sturm-Liouville Problems.Fourier AnalysisOrthogonal Functions. Orthogonal Series. Generalized Fourier Series.Fourier Integral. Fourier Cosine and Sine Transform	Arbitrary Period. Even and Odd Functions. Half-Range Expansions Forced Oscillations. Approximation by Trigonometric Polynomials.	1	3	a1, a2, a3, b1, b2, c1, c2		
1		Orthogonal Series.	1	3	a1, a2, a3, b1, b2, c1, c2		
		Fourier Cosine and Sine Transforms. Fourier Transform. Discrete and Fast	1	3	a1, a2, a3, b1, b2, c1, c2		

	Partial	Basic Concepts of PDEs. Modeling: Vibrating String, Wave Equation. Solution by Separating Variables. Use of Fourier Series. D'Alembert's Solution of the Wave Equation. Characteristics.	1	3	a1, a2, a3, b1, b2, c1, c2
2	Differential Equations (PDEs)	Modeling: Heat Flow from a Body in Space. Heat Equation. Heat Equation: Solution by Fourier Series. Steady Two-Dimensional Heat Problems. Dirichlet Problem Heat Equation: Modeling Very Long Bars. Solution by Fourier Integrals and Transforms	2	6	a1, a2, a3, b1, b2, c1, c2
3	ComplexComplex Numbers and Polar Form of Complex Numbers.FunctionsPowers and Roots. Derivative. Analytic Function. Cauchy–Riemann Equations.		1	3	a1, b2
4	4 Midterm Exam		1	3	
5	Complex Numbers and Functions	Laplace's Equation. Exponential Function. Trigonometric and Hyperbolic Functions. Euler's Formula Logarithm. General Power. Principal Value	1	3	a1, b2
6	Complex IntegrationLine Integral in the Complex Plane. Cauchy's Integral Theorem. Cauchy's Integral Formula. Derivatives of Analytic Functions.		1	3	a1, a2, a3, b1, b2, c1, c2
7	Power Series, Taylor Series	Sequences, Series, Convergence Tests. Power Series. Functions Given by Power Series Taylor and Maclaurin Series	1	3	a1, b2
8	BLaurent Series. Residue IntegrationLaurent Series. Singularities and Zeros. Infinity. Residue Integration Method. Residue Integration of Real Integrals		1	3	a1, a2, b1, b2, c1, c2
9	Complex Analysis and Potential	Electrostatic Fields. Use of Conformal Mapping. Modeling. Heat Problems Fluid Flow	1	3	a1, a2, a3, b1, b2, c1, c2
	Theory	Poisson's Integral Formula for Potentials. General Properties of Harmonic Functions.	1	3	a1, a2, a3, b1, b2, b3,

	Number of We	eeks /and Contact Hours Per Semester	16	48	
11	Final Theoretical Exam	All Previous Topics	1	3	a1, a2, a3, b1, b2, c1, c2
10	Advanced numerical analysis	 approximations of functions, Euler's method Runge-Kutta methods systems of ordinary differential equations (Normal Form and Euler's Method for Systems in Normal Form) eigenvalue/eigenvector problems, optimization, Boundary value problems Finite-difference method 	1	3	a1, a2, a3, b1, b2, c1, c2
		Uniqueness Theorem for the Dirichlet Problem			b4

•	Practical Aspect					
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs		
1						
	Number of Weeks /and Contact Hours Per Semester					

•	Tutorial Aspect:			
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)
1				
	Number of Weeks /and Units Per Semester			

T	Ceaching Strategies:		
	Lectures,		
	Self-Learning Problems/Studies,		
	Interactive class discussions.		
	Computer hands-on sessions.		
	Independent Study, and		

- Presentation
- Exercises and home works.

• Assessment Methods of the Course:

- Oral & Writing Exams
- Individual Projects and Studies Reports,
- Assignments

Assessment Methods of the Course: Home works and assignments.

- Written Report •

•	Tasks and Assignments:						
No	Assignments/ Tasks	Individual/ Group	Mark	Week Due	CILOs (symbols)		
1	Assignments on Fourier analysis.	Group	5	3 rd week	a1, a2, b1, b2, c1, c2		
2	Assignments on solutions of partial differential equations.	Individual	10	5 th week	a1, a2, a3, b1, c1, c2		
3	Assignments on complex integrations and Residue Integration.	Group	5	9 th week	a1, b1, b2, c1, c2		
4	Assignments on numerical methods.	Individual	10	11 th week	a1, a2, b1, b2, c1, c2		
	Total Score	30	==				

•	Learning Assessment:				
No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment	CILOs
1	Tasks and Assignments	3,5,9,11	30	20%	a1, a2, a3, b1, b2, c1, c2, d1,d2
2	Quizzes	4 th & 10 Th	10	6.7%	a1, a2, a3, b1, b2, c1, c2, d1,d2
3	Midterm Exam (Theoretical)	8 th week	30	20%	a1, a2, a3, b1, b2, c1, c2, d1,d2
4	Final Exam (Theoretical)	16 th week	80	53.3%	a1, a2, a3, b1, b2, c1, c2, d1,d2
	Total		150	100%	===

•	Learning Resources :						
1.	Requ	ired Text	tbook(s) :				
	1.	Dennis (G. Zill, 2018,	Advanced E	ngineering Mathem	atics, 6 th Edition,	Jones & Bartlett
		Learning	g, LLC, an As	cend Learning	Company.		
2.	Essen	tial Refe	rences:				
	1.	Dean G.	Duffy, 2017	, Advanced E	ingineering Mathema	atics with MATL	AB, 4th Edition,
		CRC Pre	ess Taylor &	Francis Group			
	2.	Erwin K	reyszig, 201	I, ADVANCE	D ENGINEERING	MATHEMATICS	,, 10th Edition,
		John Wi	ley & Sons, Iı	nc.			
	3.	Alan	Jeffrey,	2002,	Advanced	Engineering	Mathematics,
		HARCO	URT/ACADI	EMIC/PRESS		2 0	

2	engineering, A comprehensive guide Second edition, Cambridge University Press . Electronic Materials and Web Sites <i>etc.</i>
	rses Websites:
COL	
	1. Mitopencourseware
	https://ocw.mit.edu/courses/find-by-topic/#cat=mathematics&subcat=appliedmathematics 2. Wikipedia
	https://en.wikipedia.org/wiki/Partial_differential_equation
	3. Paul's online notes
	https://tutorial.math.lamar.edu/classes/de/de.aspx
	4. Johns Hopkins University
	https://mathematics.jhu.edu/online/registration/?gclid=CjwKCAjwybyJBhBwEiwAvz4G78iM
	KjrDBI6_1RV6n49xuo2YZSd8-g_EDmLtfJL3gOEAvvyQBchPBoCIdgQAvD_BwE
	5. <u>About Encyclopedia of Mathematics</u>
	https://encyclopediaofmath.org/index.php?title=Differential_equation,_partial
	6. world of mathematics equations http://eqworld.ipmnet.ru/en/methods/meth-pde.htm
	http://eqworld.ipmnet.ru/en/solutions/eqindex/eqindex-pde.htm
	http://eqworld.ipmnet.ru/en/pde-en.htm
	7. From <u>MathWorld</u> A Wolfram Web Resource
T	https://mathworld.wolfram.com/PartialDifferentialEquation.html
Jou	nals
	1. Journal of differential equations
	https://www.elsevier.com/mathematics
	2. European-American journals
	https://www.eajournals.org/keywords/laplace-transform/
	3. Applied mathematics
	https://m.scirp.org/journal/am?utm_campaign=826331897_119154924641&utm_source=lixiad
	fang&utm_medium=adwords&utm_content=kwd-
	298314862467&gclid=CjwKCAjwybyJBhBwEiwAvz4G753M86Iz8PThqHYMXfkkHRh0T9
04 h	hEnymZlEvcYVYPG-lx2KRgojgnRoCwVkQAvD_BwE r Websites:
Oth	
	1. iLectureonline
	<u>http://www.ilectureonline.com/lectures/subject/MATH/36/272</u> 2. wolframMathworld
	http://mathworld.wolfram.com/topics/CalculusandAnalysis.html
	3. studypug
	<u>https://www.studypug.com/</u> 4. khan academy
	http://www.Khanacademy.org/math
	5. UCDAVIS mathematics
	https://www.math.ucdavis.edu/
	6. Patrick's Just Math Tutorials
	http://patrickjmt.com/

- 7. Paul's Online Notes
 - http://tutorial.math.lamar.edu/
- 8. Voovers https://www.voovers.com/

الضوابط والسياسات المتبعة في المقرر Course Policies	
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتى:	-
سياسة حضور الفعاليات التعليمية Class Attendance:	1
- يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك.	
- يُقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للفسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم	
اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
 يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات يحذر 	
شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
- لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان إذا تنه سالاال محمالا ترماه النوات ترما السابي الثرارية بنالسالا ترمام في الترابية	
- إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية. التعيينات والمشاريع Assignments & Projects:	4
	4
- يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها. - إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.	
الغش Cheating:	5
- في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لانحة شؤون الطلاب.	
- في حال تُبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.	
الانتحال Plagiarism:	6
– في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك	
سیاسات آخری Other policies:	7
 أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ 	

Academic Year:

<u>Course Plan (Syllabus) Advanced Engineering Mathematics</u> <u>Course Code (ME501)</u>

• Information about Faculty Member Responsible for the Course:							
Name	Dr. Adnan Al-Salihi	Office Hours					
Location &Telephone No.	Sana'a University 770499879	SAT	SUN	MON	TUE	WED	THU
E-mail	Adnans2000@gmail.com						

	• General information about the course:					
1.	Course Title	Advanced I	Engineering ma	athematics		
2.	Course Code and Number	ME501				
		Credit Hours				
3.	Credit Hours	Lecture	Practical	Seminar/Tutorial	Total	
		3	3			
4.	Study Level and Semester	1 st Level / 1 st	st Semester			
5.	Pre-requisites	None				
6.	Co –requisite	ME 502				
7.	Program (s) in which the course is offered	MSc. In Mechanical Engineering Program				
8.	Language of teaching the course	English				
9.	Location of teaching the course	Faculty Buil	ldings			

• Course Description:

The objective of this course is to study in-depth and applications of the advance mathematics that will be used for solving mathematical problems that arise in science and engineering. Topics include: Fourier Analysis, Orthogonal Functions and Partial Differential Equations (PDE) with application on Heat, Wave and Laplace equations, Complex Numbers and Functions, Complex Integration, Power Series, Taylor Series, Laurant Series and Residue Integration, Special Linear Fractional Transformations, Complex Analysis to Potential Theory. introduction to numerical analysis include approximations of functions, systems of ordinary differential equations, eigenvalue/eigenvector problems, optimization, partial differential equations.

• Course Intended Learning Outcomes (CILOs):

Upon successful completion of Advanced Solid Mechanics and Engineering Materials Course, the graduates will be able to:

- a1. **Demonstrate an advanced concepts and knowledge of** Partial differential equations, integral transforms, complex Integration, and Residue Integration, as well as to complex Analysis to Potential Theory.
- **a2. Introduce** the concepts and mathematical methods to understand and analyze mechanical engineering fields.
- **a3.** Select appropriate mathematical methods for solve a engineering problems governing by partial

differential equations, as well as analyze, interpret the results and predict behavior.

- **b1. Construct** the mathematical models through differential equations and associated analytical and numerical methods to solve various computational problems related to mechanical and interpret the results.
- **b2 Develop** fundamental skills to complex variable analysis and apply it in solving differential equations through Laplace transform.
- **c1. Apply** the different mathematical tasks for mechanical problems as well as analyze, interpret and predict behavior.
- **c2.** Use Laplace and Fourier transforms, complex analysis, numerical methods and modern. computational tools to analysis a given solid mechanics problem.
- **d1.** Effectively manage tasks, time, and resources.
- **d2.** Communicate and work effectively in group and individually.

• Co	Course Content					
1.	Theoretical Aspect					
Order	Units	Sub Topics	Week Due	Contact Hours		
Fourier		Fourier Series Arbitrary Period. Even and Odd Functions. Half-Range Expansions Forced Oscillations. Approximation by Trigonometric Polynomials. Sturm–Liouville Problems.	1	3		
1	Analysis	Orthogonal Functions. Orthogonal Series. Generalized Fourier Series.	1	3		
		Fourier Integral. Fourier Cosine and Sine Transforms. Fourier Transform. Discrete and Fast Fourier Transforms	1	3		
	Partial	Basic Concepts of PDEs. Modeling: Vibrating String, Wave Equation. Solution by Separating Variables. Use of Fourier Series. D'Alembert's Solution of the Wave Equation. Characteristics.	2	6		
2	Differential Equations (PDEs)	Modeling: Heat Flow from a Body in Space. Heat Equation. Heat Equation: Solution by Fourier Series. Steady Two-Dimensional Heat Problems. Dirichlet Problem Heat Equation: Modeling Very Long Bars. Solution by Fourier Integrals and Transforms	1	3		

3	Complex Numbers and Functions	Complex Differentiation. Complex Numbers and Their Geometric Representation. Polar Form of Complex Numbers. Powers and Roots. Derivative. Analytic Function. Cauchy–Riemann Equations.	1	3
4	Midterm Exam		1	3
5	Complex Numbers and Functions	Laplace's Equation. Exponential Function. Trigonometric and Hyperbolic Functions. Euler's Formula Logarithm. General Power. Principal Value	1	3
6	Complex Integration	Line Integral in the Complex Plane. Cauchy's Integral Theorem. Cauchy's Integral Formula. Derivatives of Analytic Functions.	1	3
7	Power Series, Taylor Series	Sequences, Series, Convergence Tests. Power Series. Functions Given by Power Series Taylor and Maclaurin Series	1	3
8	Laurent Series. Residue Integration	Laurent Series. Singularities and Zeros. Infinity. Residue Integration Method. Residue Integration of Real Integrals	1	3
	Complex Analysis and	Electrostatic Fields. Use of Conformal Mapping. Modeling. Heat Problems Fluid Flow	1	3
9	Potential Theory	Poisson's Integral Formula for Potentials. General Properties of Harmonic Functions. Uniqueness Theorem for the Dirichlet Problem	1	3
10	Advanced numerical analysis	Approximations of functions, Euler's method Runge-Kutta methods Systems of ordinary differential equations (Normal Form and Euler's Method for Systems in Normal Form) eigenvalue/eigenvector problems, Optimization, Boundary value problems Finite-difference method	2	6
11	Final Theoretical Exam	All Previous Topics	1	3

Number of Weeks /and Contact Hours Per Semester	16	48

	Practical Aspect				
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs	
1	• None				
	Number of Weeks /and Contact Hours Per Semester				

•	Training/ Tutorials/ Exercises Aspects:							
Order	Tutorials/ Exercises	Week Due	Contact Hours					
1	• None							
Numb	Number of Weeks /and Contact Hours Per Semester							

• Teaching Strategies:

- Lectures,
- Self-Learning Problems/Studies,
- Interactive class discussions.
- Computer hands-on sessions.
- Independent Study, and
- Presentation
- Exercises and home works.

• Assessment Methods of the Course:

- Oral & Writing Exams
- Oral & Writing Exams
- Individual Projects and Studies Reports,
- Assignments
- Home works and assignments.
 Written Report

	• Tasks and Assignments:					
No	Assignments	Individual /Groups	Mark	Week Due		
1	Assignments on Fourier analysis.	Group	5	3 rd week		
2	Assignments on solutions of partial differential equations.	Individual	10	5 th week		
3	Assignments on complex integrations and Residue Integration.	Group	5	9 th week		
4	Assignments on numerical methods.	Individual	10	11 th week		
	Total Score		30			

	• Learning Assessment:			
No	Assessment Method	Week Due	Mark	Proportion of Final Assessment %
1	Tasks and Assignments	3,5,9,11	30	20%
2	Quizzes	4 th & 10 Th	10	6.7%
3	Midterm Exam (Theoretical)	8 th week	30	20%
4	Final Exam (Theoretical)	16 th week	80	53.3%
	Total		150	100%

• Learning Resources:
1. Required Textbook(s) :
1. Dennis G. Zill, 2018, Advanced Engineering Mathematics, 6 th Edition, Jones & Bartlett
Learning, LLC, an Ascend Learning Company.
2. Essential References:
1. Dean G. Duffy, 2017, Advanced Engineering Mathematics with MATLAB, 4th Edition,
CRC Press Taylor & Francis Group
2. Erwin Kreyszig, 2011, ADVANCED ENGINEERING MATHEMATICS, , 10th Edition,
John Wiley & Sons, Inc.
3. Alan Jeffrey, 2002, Advanced Engineering Mathematics,
HARCOURT/ACADEMIC/PRESS
4. K. F. Riley, M. P. Hobson and S. J. Bence, 1998, Mathematical methods for physics and
engineering, A comprehensive guide Second edition, Cambridge University Press .
3. Electronic Materials and Web Sites etc.
Courses Websites:
8. Mitopencourseware
https://ocw.mit.edu/courses/find-by-topic/#cat=mathematics&subcat=appliedmathematics
9. Wikipedia
https://en.wikipedia.org/wiki/Partial_differential_equation
10. Paul's online notes
https://tutorial.math.lamar.edu/classes/de/de.aspx
11. Johns Hopkins University
https://mathematics.jhu.edu/online/registration/?gclid=CjwKCAjwybyJBhBwEiwAvz4G78iM2

Kjr	DBI6 1	RV6n49xuo2YZSd8-g	EDmLtfJL3	gOEAvvy(QBchPBoCIdg	QAvD	B wE

12. <u>About Encyclopedia of Mathematics</u>

https://encyclopediaofmath.org/index.php?title=Differential equation, partial

13. world of mathematics equations

http://eqworld.ipmnet.ru/en/methods/meth-pde.htm

http://eqworld.ipmnet.ru/en/solutions/eqindex/eqindex-pde.htm

http://eqworld.ipmnet.ru/en/pde-en.htm

14. From <u>MathWorld</u>--A Wolfram Web Resource

https://mathworld.wolfram.com/PartialDifferentialEquation.html

Journals

4. Journal of differential equations

https://www.elsevier.com/mathematics

5. European-American journals

https://www.eajournals.org/keywords/laplace-transform/

6. Applied mathematics

https://m.scirp.org/journal/am?utm_campaign=826331897_119154924641&utm_source=lixiao fang&utm_medium=adwords&utm_content=kwd-298314862467&gclid=CjwKCAjwybyJBhBwEiwAvz4G753M86Iz8PThqHYMXfkkHRh0T9s hEnymZlEvcYVYPG-lx2KRgojgnRoCwVkQAvD_BwE

Other Websites:

9. iLectureonline

http://www.ilectureonline.com/lectures/subject/MATH/36/272

10. wolframMathworld

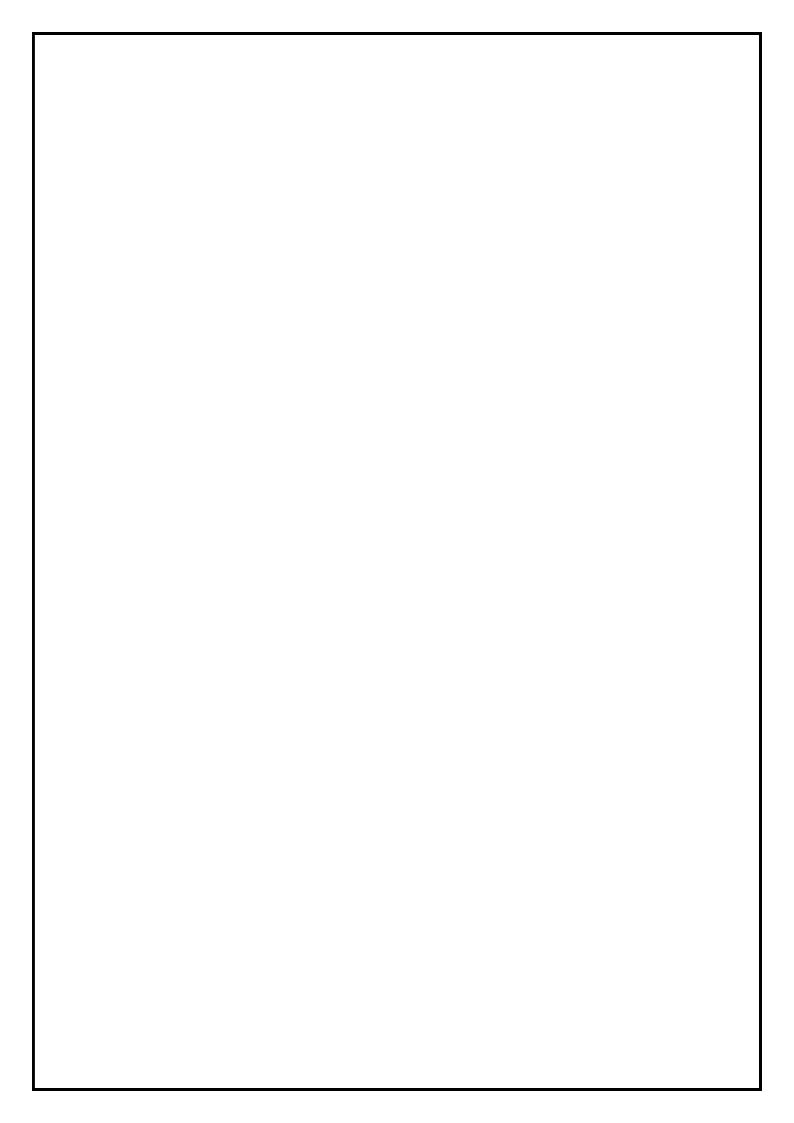
http://mathworld.wolfram.com/topics/CalculusandAnalysis.html

11. studypug

https://www.studypug.com/

12. khan academy

http://www. Khanacademy.org/math


- 13. UCDAVIS mathematics
 - https://www.math.ucdavis.edu/
- 14. Patrick's Just Math Tutorials
 - http://patrickjmt.com/
- 15. Paul's Online Notes
 - http://tutorial.math.lamar.edu/

16. Voovers

https://www.voovers.com/

 الضوابط والسياسات المتبعة في المقرر Course Policies 	
1	
2	
-	

3	ضوابط الامتحان Exam Attendance/Punctualit <u>t:</u>	
	- لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان	
	- إذا تغيب الطالب عن الامتحان النهائي تُطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
4	التعيينات والمشاريع Assignments & Projects:	
	- يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها.	
	- إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.	
5	الغش Cheating:	
	- في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب.	
	- في حال ثبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.	
6	الانتحال Plagiarism:	
	– في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك	
7	سیاسات آخری Other policies:	
	- أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ	

