<u>13-</u>Course Specification of Advanced Heat Transfer <u>Course Code (ME523)</u>

•	General Information About the Course:						
1.	Course Title:	Advanced Heat Transfer.					
2.	Course Code and Number:	ME523.	ME523.				
	Credit Hours:		Credit	Hours	Total		
3.		Lecture	Practical	Seminar/Tutorial	Credit Hours		
		2		2	3		
4.	Study Level and Semester:	1 st Level	/ 1 st Semeste	r.			
5.	Pre-requisites (if any):	Heat and	Mass Transf	er (ME353),			
6.	Co-requisites (if any):	None.					
7.	Program (s) in which the course is offered:	MSc. In Mechanical Engineering Program.					
8.	Language of teaching the course:	English Language.					
9.	Study System:	Courses & Thesis.					
10.	Prepared By:	Dr. Hamoud A. Al-Nahari.					
11.	Reviewed by:	Assoc. Prof. Dr. Abdul-Malik E. Momin.					
12.	Date of Approval:						

• Course Description:

The course will present detailed discussions and first-principles derivations of pertinent governing equations, analytical and computational problem-solving techniques, and the process of developing rational approximations to solve heat transfer problems. This course will emphasize more on the topics of conduction and radiation as compared to convection. Radiative heat transfer, which is often treated inadequately in typical undergraduate classes, will be specifically highlighted with applications to emerging energy conversion and storage technologies. In this comprehensive heat transfer introduction course, students will be asked to work on a final project using heat transfer analysis and design for a real-life engineering/research problem of their own choices.

Topics to be covered include but not limited to: conservation laws and the energy transport equation, conduction heat transfer – one-dimensional, two-dimensional, steady-state and transient systems, laminar convection, heat-exchanger design, fundamentals of radiative energy transport, radiative exchange between surfaces, radiative heat-transfer in absorbing-emitting-scattering media, introduction to Monte Carlo techniques, heat- and mass-transfer analogies, and advanced multimode heat-transfer problems.

• (Course Intended Learning Outcomes (CILOs):					
Upor	Upon successful completion of Advanced Heat Transfer Course, the graduates will be able to:					
a1.	Explain the general heat conduction equation, fins heat transfer, solution of two-dimensional steady state equation.					
a2.	Describe the solution of transient heat conduction equation and convection heat transfer.					
a3.	Explain radiation properties and apply radiation networks to calculate radiation exchange between surfaces, and gas radiation.					

b1.	Analyze the energy transport equations.
b2.	Explore different tools to solve the complex heat transfer problems.
b3.	Create multimode and realistic heat transfer problems.
c1.	Employ modern appropriate software packages to solve complex heat transfer problems.
c2.	Implement research to solve heat transfer problems within the constraints.
d1	Review IT capabilities and other resources to develop scientific research in heat transfer.
d2.	Examine effectively in both orally and writing forms for different audiences.
d3.	Assess lifelong learning of the developments in the field of advanced heat transfer.
d4.	Cooperate effectively in team work to reach to a professional context.

• A Pi	• Alignment of Course Intended Learning Outcomes (CILOs) to Program Intended Learning Outcomes (PILOs)					
	CILOs	PILOs				
Kno succ Mec the g	wledgeandUnderstanding:UponessfulcompletionofAdvancedSolidhanicsandEngineeringMaterialsCourse,graduateswill be able to:	• Knowledge and Understanding: Upon successful completion of the MSc. In Mechanical Engineering Program, the graduates will be able to:				
a1.	Explain the general heat conduction equation, fins heat transfer, solution of two- dimensional steady state equation.	A1. Acquire advanced concepts and knowledge of mathematics, scientific, mechanical engineering and associated technologies as well as across the boundaries of interdisciplinary disciplines.				
a2.	Describe the solution of transient heat conduction equation and convection heat transfer.	A2. Identify and critically evaluate contemporary engineering technologies, current developments and emerging trends within the mechanical engineering contexts.				
a3.	Explain radiation properties and apply radiation networks to calculate radiation exchange between surfaces, and gas radiation.	A3. Provide a holistic description of principles, concepts, approaches, techniques and analysis tools to design and development of existing and novel mechanical systems, while taking a sustainable and environmentally-friendly approach.				
• Cog	nitive/ Intellectual Skills: Upon successful	• Cognitive/ Intellectual Skills: Upon				
comj and grad	pletion of the Advanced Solid MechanicsEngineeringMaterialsCourse,uates will be able to:	successful completion of the MSc. In Mechanical Engineering Program, the graduates will be able to:				
b1.	Analyze the energy transport equations.	B1. Identify and apply specialized knowledge and skills to solve problems that are critical to future growth of industry and business.				
b2.	Explore different tools to solve the complex heat transfer problems.	B2. Creatively thinking and apply analysis tools to formulate and solve complex engineering problems in the mechanical engineering context using modern techniques and tools.				
b3.	Create multimode and realistic heat transfer	B3. Design and optimize mechanical				

	problems.	components, systems and process to meet desired needs within realistic constraints.		
Prof	fessional and Practical Skills: Upon	• Professional and Practical Skills: Upon		
succ	essful completion of the Advanced Solid	successful completion of the MSc. In		
Mec	hanics and Engineering Materials Course,	Mechanical Engineering Program, the		
the g	graduates will be able to:	graduates will be able to:		
c1.	Employ modern appropriate software packages to solve complex heat transfer problems.	C1. Use modern manufacturing processes and materials, experimental tests, appropriate software packages and other modern tools for the design analysis and manufacture of mechanical components and systems.		
c2.	Implement research to solve heat transfer problems within the constraints.	C2. Conduct research and studies to solve mechanical engineering problems professionally, ethically and responsibly within realistic constraints.		
• Tra	nsferable Skills: Upon successful completion	• Transferable Skills: Upon successful		
of the Advanced Solid Mechanics and				
OI	the Advanced Solid Mechanics and	completion of the MSc. In Mechanical		
or Eng	the Advanced Solid Mechanics and ineering Materials Course, the graduates	completion of the MSc. In Mechanical Engineering Program, the graduates will be		
of Eng will	the Advanced Solid Mechanics and ineering Materials Course, the graduates be able to:	completion of the MSc. In Mechanical Engineering Program, the graduates will be able to:		
or Eng will d1	the Advanced Solid Mechanics and ineering Materials Course, the graduates be able to: Review IT capabilities and other resources to develop scientific research in heat transfer.	 completion of the MSc. In Mechanical Engineering Program, the graduates will be able to: D1. Adopt effectively IT capabilities and other different resources of information to develop scientific research in mechanical engineering fields. 		
oI Eng will d1 d2.	the Advanced Solid Mechanics and ineering Materials Course, the graduates be able to: Review IT capabilities and other resources to develop scientific research in heat transfer. Examine effectively in both orally and writing forms for different audiences.	 completion of the MSc. In Mechanical Engineering Program, the graduates will be able to: D1. Adopt effectively IT capabilities and other different resources of information to develop scientific research in mechanical engineering fields. D2. Communicate, present, challenge and defend research ideas, results and conclusions in both orally and writing forms to different audiences in contexts. 		
d1 d2. d3.	the Advanced Solid Mechanics and ineering Materials Course, the graduates be able to:Review IT capabilities and other resources to develop scientific research in heat transfer.Examine effectively in both orally and writing forms for different audiences.Assess lifelong learning of the developments in the field of advanced heat transfer.	 completion of the MSc. In Mechanical Engineering Program, the graduates will be able to: D1. Adopt effectively IT capabilities and other different resources of information to develop scientific research in mechanical engineering fields. D2. Communicate, present, challenge and defend research ideas, results and conclusions in both orally and writing forms to different audiences in contexts. D3. Identify a need for the latest relevant knowledge and technologies and undertake lifelong learning. 		

 Alignment of CILOs to Teaching and Assessment Strategies 					
Alignment of Knowledge and Understanding CILOs:					
Knowledge and Understanding CILOs	Assessment Strategies				
Explain the general heat conduction equation, fins heat transfer, solution of two-dimensional steady state equation.	 Lectures, Self-Learning Problems/Studies, Case Study, Individual/Group Projects and Studies, Active Learning, Computer Hands-on 	 Oral & Writing Exams Individual Projects and Studies Reports, Assignments. 			
	Sessions.				
Describe the solution of transient heat conduction equation and convection heat	Lectures,Self-Learning	 Oral & Writing Exams Individual Projects and 			
	Alignment of Knowledge and Understand Knowledge and Understanding CILOs Explain the general heat conduction equation, fins heat transfer, solution of two-dimensional steady state equation.	Alignment of Knowledge and Understanding CILOsKnowledge and Understanding CILOsExplain the general heat conduction equation, fins heat transfer, solution of two-dimensional steady state equation.• Lectures, • Self-Learning • Problems/Studies, • Case Study, • Individual/Group Projects and Studies, • Active Learning, • Computer Hands-on Sessions.Describe the solution of transient heat conduction equation and convection heat• Lectures,			

a3.	transfer. Explain radiation properties and apply radiation networks to calculate radiation exchange between surfaces, and gas radiation.	 Problems/Studies, Case Study, Individual/Group Projects and Studies, Active Learning, Computer Hands-on Sessions. Individual Projects Studies Reports, Active Learning Problems/Studies, Case Study, Individual/Group Projects and Studies, Case Study, Individual/Group Projects and Studies, Active Learning, Computer Hands-on Sessions. Active Learning, Computer Hands-on Sessions. 	
•	Alignment of Intellectual Skills CILOs:		
	Intellectual Skills CILOs	Teaching Strategies	Assessment Strategies
b1.	Analyze the energy transport equations. Explore different tools to solve the complex heat transfer problems.	 Lectures, Self-Learning Problems/Studies, Case Study, Individual/Group Projects and Studies, Active Learning, Computer Hands-on Sessions. Lectures, Self-Learning Problems/Studies, Case Study, 	 Oral & Writing Exams Individual Projects and Studies Reports, Assignments. Oral & Writing Exams Individual Projects and Studies
		 Individual/Group Projects and Studies, Active Learning, Computer Hands-on Sessions. 	Reports, Assignments.
b3.	Create multimode and realistic heat transfer problems.	 Lectures, Self-Learning Problems/Studies, Case Study, Individual/Group Projects and Studies, Active Learning, Computer Hands-on Sessions. 	 Oral & Writing Exams Individual Projects and Studies Reports, Assignments.
•	Alignment of Professional and Practical	Skills CILOs:	
	Professional and Practical Skills CILOs	Teaching Strategies	Assessment Strategies
c1.	Employ modern appropriate software	Lectures, Self-Learning	Oral & Writing Exams

	packages to solve complex heat transfer problems.	 Problems/Studies, Case Study, Individual/Group Projects and Studies, Active Learning, Computer Hands-on Sessions. 	 Individual Projects and Studies Reports, Assignments.
c2.	Implement research to solve heat transfer problems within the constraints.	 Lectures, Self-Learning Problems/Studies, Case Study, Individual/Group Projects and Studies, Active Learning, Computer Hands-on Sessions. 	 Oral & Writing Exams Individual Projects and Studies Reports, Assignments.
•	Alignment of Transferable (General) S	Skills CILOs:	
	Transferable (General) Skills CILOs	Teaching Strategies	Assessment Strategies
d1.	Review IT capabilities and other resources to develop scientific research in heat transfer.	 Independent Study, Individual/Group Projects and Studies, Presentation, 	Presentation,Written Report.
d2.	Examine effectively in both orally and writing forms for different audiences.	Independent Study,Individual/Group Projects and Studies,	Presentation,Written Report.
d3.	Assess lifelong learning of the developments in the field of advanced	 Independent Study, Individual/Group Projects and Studies, 	Presentation,Written Report.
	neat transfer.	,	

Course Content							
•]	Theoretical Aspect						
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs		
26.	Introduction	 Conservation equations; General heat conduction equation, Dimensionless numbers, 1-D steady-state equation. 	1	2	al		
27.	1-D conduction	 1-D steady-state heat conduction, 1-D fins 2-D conduction, Separation variables method. 	1	2	al		

28.	2-D conduction	 Separation of variables, Unsteady/transient conduction equation, Analytical solution techniques, Laplace transform solutions for lumped capacitance problems. 	1	2	a1, a2, b1, b2
29.	Transient conduction:	Numerical and computational techniques (finite difference, finite volume) to solve conduction problems.	1	2	a1, a2, b1, b2, b3, c1, c2, d1, d3
30.	Convection	 Convection introduction, Conservation equations derivation, laminar boundary layer equations. 	1	2	a1, a2, b1, b2, b3, c1, c2, d1, d3
31.	External convective flow	 Integral solutions, Internal convective flows and correlations. 	1	2	a1, a2, b1, b2, b3, c1, c2, d1, d3
32.	Heat exchangers	- Introduction, LMTD and e-NTU methods for heat exchanger design.	1	2	a1, a2, b1, b2, b3, c1, c2, d1, d3
33.	Midterm Exam	All previous topics	1	2	a1, a2, a3, b1, b2, b3, c1, c2
34.	Radiation fundamentals	 Surface optical properties, View factors, Radiative exchange between surfaces. 	1	2	a1, a2, a3, b1, b2, b3, c1, c2, d1, d3
35.	Gray-diffuse surface	 Gray-diffuse surface radiation; Semi-gray surfaces 	1	2	a1, a2, a3, b1, b2, b3, c1, c2, d1, d3

	Number of Weeks /and	Contact Hours Per Semester	16	33	
41.	Final Theoretical Exam	All previous topics	1	3	a1, a2, a3, b1, b2, b3, c1, c2
40.	Final projects	Presentation of final projects	1	2	a1, a2, b1, b2, b3, c1, c2, d1, d2, d3, d4
39.	Final projects	Follow up on final projects	1	2	a1, a2, b1, b2, b3, c1, c2, d1, d2, d3, d4
38.	Review and special topics discussion	Review and special topics discussion	1	2	a1, a2, a3, b1, b2, b3, c1, c2, d1, d3
37.	Radiative Transport Equation (RTE)	Monte Carlo method (Part II) for solving the RTE in participating media	1	2	a1, a2, a3, b1, b2, b3, c1, c2, d1, d3
36.	Radiative Transport Equation (RTE)	RTE approximations in participating media and solution techniques	1	2	a1, a2, a3, b1, b2, b3, c1, c2, d1, d3
		 Method of radiosity; Monte Carlo method (Part I) for surface radiation exchange. 			

Practical Aspect						
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs		
1	 None 					
	Number of Weeks /and Contact Hours Per Semester					

•	Tutorial Aspect:				
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)	
1	All the above chapters.	Weekly	28		
	Number of Weeks /and Units Per Semester				

• Teaching Strategies:

- Lectures,
- Self-Learning Problems/Studies,
- Case Study,
- Individual Projects and Studies,
- Active Learning,
- Computer Hands-on Sessions.
- Independent Study, and
- Presentation.

• Assessment Methods of the Course:

- Oral & Written Exams,
- Individual/Group Projects and Studies Reports,
- Presentation,
- Assignments.

•	Tasks and Assignments:						
No	Assignments/ Tasks	Individual/ Group	Mark	Week Due	CILOs (symbols)		
1	Homework and Assignments.	Individual	10	3 rd , 6 th , 9 th , 12 th	a1, a2, a3, b1, b2, b3, c1, c2, d1, d2, d3, d4		
2	Mini/Major Project	Group	10	7 th , 10 th	a1, a2, a3, b1, b2, b3, c1, c2, d1, d2, d3, d4		
3	Mini/Major Project	Group	10	13 th	a1, a2, a3, b1, b2, b3, c1, c2, d1, d2, d3, d4		
	Total Score		30	==			

Learning Assessment:					
No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment	CILOs
1	Tasks and Assignments	3^{rd} , 6^{th} , 9^{th} , 12^{th}	30	20%	a1, a2, a3, b1, b2, b3, c1, c2, d1, d2, d3, d4

					1
2	Quizzes	3 rd , 8 th , 13 th	10	6.7%	a1, a2, a3, b1, b2, b3, c1, c2
3	Midterm Exam (Theoretical)	8 th	30	20%	a1, a2, a3, b1, b2, b3, c1, c2
4	Final Exam (Theoretical)	16 th	80	53.3%	a1, a2, a3, b1, b2, b3, c1, c2
	Total		150	100%	===

• Learning Resources :
1- Required Textbook(s) :
1. Greg F. Naterer, 2022, Advanced Heat Transfer, 3 rd ed, CRC Press.
2. Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt, 2018,
Fundamentals of Heat and Mass Transfer, 8th Edition, Wiley.
2- Essential References:
1. Holman, J.P., Heat Transfer, 10th Edition, Tata McGraw-Hill
Publishing Company Limited, New Delhi, 2010.
2. Lienhard IV and Lienhard V, A Heat Transfer Textbook (2012).
3. Nellis and Klein, Heat Transfer (2009).
4. Arpaci, V.S., Conduction Heat Transfer, Addison-Wesley (1966).
5. Ozisik, M.N., <i>Heat Conduction</i> , John Wiley (1984).
6. Carslaw, H.S. and J.C. Jaeger, Conduction of Heat in Solids, Oxford University Press (1959).
7. Kays, W.M. and M.E. Crawford, Convective Heat and Mass Transfer, McGraw-Hill (1993).
8. Bejan, A., Convection Heat Transfer, John Wiley (1984).
9. Modest, M. F., Radiative Heat Transfer, Mc-Graw Hill (1993).
10. Siegel, R. and J.R. Howell, Thermal Radiation Heat Transfer, Hemisphere (1992).
11. Bohren, C.F, and Hufman, D.R., 1984, Absorption and Scattering of Light by Small Particles, John Wiley
& Sons.
3- Electronic Materials and Web Sites etc.
1. <u>https://opencourses.emu.edu.tr/course/view.php?id=23</u>
2. <u>https://edu.epfl.ch/coursebook/en/advanced-heat-transfer-ME-465</u>
3. <u>https://umich.instructure.com/courses/279823</u>
4. <u>http://web.mit.edu/lienhard/www/ahtt.html</u>
5. http://www.sciencedirect.com/science/book/9780123869449

 الضوابط والسياسات المتبعة في المقرر Course Policies 	1
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:	
سياسة حضور الفعاليات التعليمية Class Attendance:	1
 يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. 	
 يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم 	
اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy: الحضور المتأخر	2
- يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات يحذر	
شفوياً من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
- لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان	
- إذا تغيب الطالب عن الامتحان النهائي تُطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
التعيينات والمشاريع Assignments & Projects:	4
 يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها. 	
- إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.	
الغش Cheating:	5
ـ في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب.	
- في حال ثبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.	
الانتحال Plagiarism:	6
 في حالة وجود شخص بنتجل شخصية طالب لأداع الامتحان نباية عنه تطبق اللائحة الخاصة بذلك 	
سیاسات آخری Other policies:	7

Academic Year:

Course Plan (Syllabus) Advanced Heat Transfer Course Code (ME523)

• Information about Faculty Member Responsible for the Course:							
Name	Dr. Hamoud A. Al-Nahari	Office Hours					
Location &Telephone No.	772223240	SAT SUN MON		TUE	WED	THU	
E-mail	H_nahary@hotmail.com						

	General information about the course:						
	Course Title	Advanced H	leat Transfer.				
2.	Course Code and Number	ME523.					
		Credit Hours T					
3.	Credit Hours	Lecture	Practical	Seminar/Tutorial	Credit Hours		
		2		2	3		
4.	Study Level and Semester	1 st Level / 1 st	st Semester.				
5.	Pre-requisites	Heat and Ma	ass Transfer (N	Æ353).			
6.	Co –requisite	None.					
7.	Program (s) in which the course is offered	MSc. In Mechanical Engineering Program.					
8.	Language of teaching the course	English Language.					
9.	Location of teaching the course	Faculty Buil	dings.				

• Course Description:

The course will present detailed discussions and first-principles derivations of pertinent governing equations, analytical and computational problem-solving techniques, and the process of developing rational approximations to solve heat transfer problems. This course will emphasize more on the topics of conduction and radiation as compared to convection. Radiative heat transfer, which is often treated inadequately in typical undergraduate classes, will be specifically highlighted with applications to emerging energy conversion and storage technologies. In this comprehensive heat transfer introduction course, students will be asked to work on a final project using heat transfer analysis and design for a real-life engineering/research problem of their own choices.

Topics to be covered *include but not limited* to: conservation laws and the energy transport equation; conduction heat transfer – one-dimensional, two-dimensional, steady-state and transient systems; laminar convection; heat-exchanger design; fundamentals of radiative energy transport, radiative exchange between surfaces, radiative heat-transfer in absorbing-emitting-scattering media; introduction to Monte Carlo techniques; heat- and mass-transfer analogies; and advanced multimode heat-transfer problems.

	Course Intended Learning Outcomes (CILOs):
Upor	n successful completion of Advanced Heat Transfer Course, the graduates will be able to:
a1.	Explain the general heat conduction equation, fins heat transfer, solution of two-dimensional
	steady state equation.
a2.	Describe the solution of transient heat conduction equation and convection heat transfer.
a3.	Explain radiation properties and apply radiation networks to calculate radiation exchange
	between surfaces, and gas radiation.
b1.	Analyze the energy transport equations.
b2.	Explore different tools to solve the complex heat transfer problems.
b3.	Create multimode and realistic heat transfer problems.
c1.	Employ modern appropriate software packages to solve complex heat transfer problems.
c2.	Implement research to solve heat transfer problems within the constraints.
d1	Review IT capabilities and other resources to develop scientific research in heat transfer.
d2.	Examine effectively in both orally and writing forms for different audiences.
d3.	Assess lifelong learning of the developments in the field of advanced heat transfer.
d4.	Cooperate effectively in team work to reach to a professional context.

•	Course Conten	t		
• T Order	heoretical Aspect Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours
1	Introduction	 Conservation equations; General heat conduction equation, Dimensionless numbers, 1-D steady-state equation. 	1	2
2	1-D conduction	 1-D steady-state heat conduction, 1-D fins 2-D conduction, Separation variables method. 	1	2
3	2-D conduction	 Separation of variables, Unsteady/transient conduction equation, Analytical solution techniques, Laplace transform solutions for lumped capacitance problems. 	1	2
4	Transient conduction:	Numerical and computational techniques (finite difference, finite volume) to solve conduction problems.	1	2
5	Convection	 Convection introduction, Conservation equations derivation, laminar boundary layer equations. 	1	2
6	External convective flow	 Integral solutions, Internal convective flows and correlations. 	1	2
7	Heat exchangers	- Introduction, LMTD and e-NTU methods for heat exchanger design.	1	2

8	Midterm Exam	All previous topics	1	2
9	Radiation fundamentals	Surface optical properties,View Factors,Radiative exchange between surfaces.	1	2
10	Gray-diffuse surface	 Gray-diffuse surface radiation; Semi-gray surfaces Method of radiosity; Monte Carlo method (Part I) for surface radiation exchange. 	1	2
11	Radiative Transport Equation (RTE)	RTE approximations in participating media and solution techniques	1	2
12	Radiative Transport Equation (RTE)	Monte Carlo method (Part II) for solving the RTE in participating media	1	2
13	Review and special topics discussion	Review and special topics discussion	1	2
14	Final projects	Follow up on final projects	1	2
15	Final projects	Presentation of final projects	1	2
16	Final Theoretical Exam	All previous topics	1	3
	Number of We	eeks /and Contact Hours Per Semester	16	33

	Practical Aspect				
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs	
1	• None				
	Number of Weeks /and Contact Hours Per Semester				

Training/ Tutorials/ Exercises Aspects:				
Order	Tutorials/ Exercises	Week Due	Contact Hours	
1	 All the above chapters. 	Weekly	28	
Number of Weeks /and Contact Hours Per Semester				

• Teaching Strategies:

- Lectures,
- Self-Learning Problems/Studies,
- Case Study,
- Individual Projects and Studies,
- Active Learning,
- Computer Hands-on Sessions.
- Independent Study, and
- Presentation.

• Assessment Methods of the Course:

- Oral & Written Exams
- Individual/Group Projects and Studies Reports,
- Presentation,
- Assignments.

	Tasks and Assignments:				
No	Assignments	Individual /Groups	Mark	Week Due	
1	Homework and Assignments.	Individual	10	3^{rd} , 6^{th} , 9^{th} , 12^{th}	
2	Mini/Major Project	Group	10	$7^{ m th}$, $10^{ m th}$	
3	Mini/Major Project	Group	10	13 th	
	Total Score		30		

• Learning Assessment:				
No	Assessment Method	Week Due	Mark	Proportion of Final Assessment %
1	Tasks and Assignments	3 rd , 6 th , 9 th , 12 th	30	20%
2	Quizzes	3 rd , 8 th , 13 th	10	6.7%
3	Midterm Exam (Theoretical)	8 th	30	20%
4	Final Exam (Theoretical)	16 th	80	53.3%
	Total		150	100%

	Learning Resources :
	1. Required Textbook(s) :
1.	Greg F. Naterer, 2022, Advanced Heat Transfer, 3rd ed, CRC Press.
2.	Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt, 2018,
	Fundamentals of Heat and Mass Transfer, 8th Edition, Wiley.
2.	Essential References:
1.	Holman, J.P., Heat Transfer, 10th Edition, Tata McGraw-Hill
	Publishing Company Limited, New Delhi, 2010.
2.	Lienhard IV and Lienhard V, A Heat Transfer Textbook (2012).
3.	Nellis and Klein, Heat Transfer (2009).
4.	Arpaci, V.S., Conduction Heat Transfer, Addison-Wesley (1966).
5.	Ozisik, M.N., Heat Conduction, John Wiley (1984).
6.	Carslaw, H.S. and J.C. Jaeger, Conduction of Heat in Solids, Oxford University Press (1959).
7.	Kays, W.M. and M.E. Crawford, Convective Heat and Mass Transfer, McGraw-Hill (1993).
8.	Bejan, A., Convection Heat Transfer, John Wiley (1984).
9.	Modest, M. F., Radiative Heat Transfer, Mc-Graw Hill (1993).
10.	Siegel, R. and J.R. Howell, Thermal Radiation Heat Transfer, Hemisphere (1992).
11.	Bohren, C.F, and Hufman, D.R., 1984, Absorption and Scattering of Light by Small Particles, John Wiley
	& Sons.
3.Ele	ectronic Materials and Web Sites <i>etc</i> .
	1. <u>https://opencourses.emu.edu.tr/course/view.php?id=23</u>

- 2. https://edu.epfl.ch/coursebook/en/advanced-heat-transfer-ME-465
- 3. <u>https://umich.instructure.com/courses/279823</u>
- 4. <u>http://web.mit.edu/lienhard/www/ahtt.html</u>

5. http://www.sciencedirect.com/science/book/9780123869449

 الضوابط والسياسات المتبعة في المقرر Course Policies 	
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:	2
سياسة حضور الفعاليات التعليمية Class Attendance:	1
 يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. 	
 يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للفسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم 	
اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
ـ يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات يحذر	
شفوياً من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
ـ لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان	
- إذا تغيب الطالب عن الامتحان النهائي تُطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
التعيينات والمشاريع Assignments & Projects:	4
_ يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها.	
– إذا تأخر الطالب في تسليم التكليفات عن ألموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.	
الغش Cheating:	5
- في حال تبوت قيام الطالب بالغش أو النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.	
الانتحال Plagiarism:	6
_ في حالة وجود شخص بنتجل شخصية طالب لأداء الامتحان نبابة عنه تطبق اللائحة الخاصة بذلك	
سياسات أخره، Other policies:	7
- أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ	,

