<u>3-</u> Course Specification of Advanced Mechanics of Solid and Materials Course Code (ME511)

•	General Information About the	Course	:			
1.	Course Title:	Advance	d Mechanics	of Solid and Mater	rials	
2.	Course Code and Number:	ME511				
			Credit	Hours	Total	
3.	Credit Hours:	Lecture	Practical	Seminar/Tutorial	Totai	
		3			3	
4.	Study Level and Semester:	1 st Level / 1 st Semester				
5.	Pre-requisites (if any):	ME 234				
6.	Co-requisites (if any):	ME 501 &	& ME 502			
7.	Program (s) in which the course is offered:	MSc. In Mechanical Engineering Program				
8.	Language of teaching the course:	English				
9.	Study System:	Courses & Thesis				
10.	Prepared By:	Dr. Khalil Al-Hatab				
11.	Reviewed by:	Dr				
12.	Date of Approval:					

• Course Description:

This course provides graduates the theoretical knowledge of stress and strain and advanced concepts of mechanics of materials to solve mechanical design problems and enable any component to be designed such that it will not fail within its service life. The course covers: 3-D analysis of stress and strain, equilibrium and compatibility equations, 3-D Hooke's law, 2-D problems in elasticity, failure criteria, numerical methods, energy methods, fatigue and fracture mechanics and plastic behavior of materials. Students will be able to apply gained knowledge and techniques to the stress analysis of curved beams, beams on elastic foundations, asymmetric beams, torsion of prismatic elements, thick-walled cylinders and rotating disks.

• Course Intended Learning Outcomes (CILOs):

Upon successful completion of Advanced Solid Mechanics and Engineering Materials Course, the graduates will be able to:

- **a1.** Transformation of a physical problem into a mathematical problem to enable estimations of stress and deformation as well as safety assessment concerning the response of materials and structural elements to various applied loads.
- **a2.** Acquire an in-depth understanding of advanced concepts, principles and solution techniques of elasticity and plasticity to analyze stress and strain of loaded members throughout the design of various machine elements and systems.
- **a3.** Provide an in-depth understanding of failure modes and criteria, analysis methods and numerical approaches to analyze and design of a safe structure.
- **b1.** Apply elasticity, plasticity, and numerical analysis principles and methods to a variety of common mechanical system components so as to perform safely their intended functions.
- **b2.** Creatively thinking and apply proper stress and strain analysis techniques to obtain exact solutions for a variety of complex problems in structural mechanics and design of machine elements.
- **b3.** Combining strength of material analysis together with failure theory in order to design a safe structure.
- **b4.** Conduct failure analysis to determine the safety of a structure in the mechanical engineering contexts.
- **c1.** Use numerical methods and modern computational tools to construct a suitable finite element model for a given solid mechanics problem.
- **d1.** Effectively communicate, present and prepare documentations on stress and strain analysis activities to different audiences in contexts.
- **d2.** Undertake lifelong learning of the developments in the field of advanced solid mechanics and engineering materials.

• Alignment of Course Intended Learning Outcomes (CILOs) Program Intended Learning Outcomes (PILOs)					
	CILOs	PILOs			
Kno succ Mec the s	wledge and Understanding: Upon essful completion of Advanced Solid chanics and Engineering Materials Course, praduates will be able to:	• Knowledge and Understanding: Upon successful completion of the MSc. In Mechanical Engineering Program, the graduates will be able to:			
a1.	Transformation of a physical problem into a	A1. Acquire advanced concepts and knowledge			
	mathematical problem to enable estimations of stress and deformation as well as safety assessment concerning the response of materials and structural elements to various applied loads.	of mathematics, scientific, mechanical engineering and associated technologies as well as across the boundaries of interdisciplinary disciplines.			
a2.	Acquire an in-depth understanding of advanced concepts, principles and solution techniques of elasticity and plasticity to analyze stress and strain of loaded members throughout the design of various machine elements and systems.	A2. Identify and critically evaluate contemporary engineering technologies, current developments and emerging trends within the mechanical engineering contexts.			
a3.	Provide an in-depth understanding of failure	A3. Provide a holistic description of principles,			
	modes and criteria, analysis methods and numerical approaches to analyze and design of a safe structure.	concepts, approaches, techniques and analysis tools to design and development of existing and novel mechanical systems, while taking a sustainable and environmentally-friendly approach.			
• Cog	nitive/ Intellectual Skills: Upon successful	• Cognitive/ Intellectual Skills: Upon			
com	pletion of the Advanced Solid Mechanics	successful completion of the MSc. In			
and orad	Engineering Materials Course, the uates will be able to:	graduates will be able to:			
b1.	Apply elasticity, plasticity, and numerical analysis principles and methods to a variety of common mechanical system components so as to perform safely their intended functions.	B1. Identify and apply specialized knowledge and skills to solve problems that are critical to future growth of industry and business.			
b2.	Creatively thinking and apply proper stress and strain analysis techniques to obtain exact solutions for a variety of complex problems in structural mechanics and design of machine elements.	B2. Creatively thinking and apply analysis tools to formulate and solve complex engineering problems in the mechanical engineering context using modern techniques and tools.			
b3.	Combining strength of material analysis together with failure theory in order to design a safe structure.	B3. Design and optimize mechanical components, systems and process to meet desired needs within realistic constraints.			
b4.	Conduct failure analysis to determine the safety of a structure in the mechanical engineering contexts.	B4. Analyze and assess risks of the professional practice in the mechanical engineering contexts.			

Sc. In n, the es and opriate ols for re of		
n, the es and opriate ols for re of		
es and opriate ols for re of		
es and opriate ols for re of		
opriate ols for re of		
ols for re of		
re of		
1		
1		
solve		
blems within		
vv runni		
ling of		
isiness		
spects,		
business management techniques and good		
practices in a range of contexts.		
cessful		
anical		
will be		
will be		
will be		
will be 1 other relop a		
will be 1 other relop a neering		
vill be 1 other relop a neering 2 and		
will be d other relop a neering e and usions		
will be d other velop a neering e and lusions fferent		
will be d other relop a neering e and lusions fferent		
will be d other relop a heering e and lusions fferent elevant		
will be 1 other velop a neering e and lusions fferent elevant ce life-		
will be 1 other relop a heering e and lusions fferent elevant ce life-		
will be d other velop a neering e and lusions fferent elevant ce life- within		

 Alignment of CILOs to Teaching and Assessment Strategies 								
•	Alignment of Knowledge and Understanding CILOs:							
	Knowledge and Understanding CILOs Teaching Strategies Assessment Strategies							
a1.	Transformation of a physical problem into a mathematical problem to enable estimations of stress and deformation as well as safety assessment concerning the response of materials and structural elements to various applied loads.	 Lectures, Self-Learning Problems/Studies, Case study, Individual/Group 	 Oral & Writing Exams Individual Projects and Studies Reports, Assignments 					

		 Projects and Studies, Active learning, Computer hands-on sessions. 			
a2.	Acquire an in-depth understanding of advanced concepts, principles and solution techniques of elasticity and plasticity to analyze stress and strain of loaded members throughout the design of various machine elements and systems.	 Lectures, Self-Learning Problems/Studies, Case study, Individual/Group Projects and Studies, Active learning, Computer hands-on sessions. 	 Oral & Writing Exams Individual Projects and Studies Reports, Assignments 		
a3.	Provide an in-depth understanding of failure modes and criteria, analysis methods and numerical approaches to analyze and design of a safe structure.	 Lectures, Self-Learning Problems/Studies, Case study, Individual/Group Projects and Studies, Active learning, Computer hands-on sessions. 	 Oral & Writing Exams Individual Projects and Studies Reports, Assignments 		
•	Alignment of Intellectual Skills CILOs:				
	Intellectual Skills CILOs	Teaching Strategies	Assessment Strategies		
b1.	Apply elasticity, plasticity, and numerical analysis principles and methods to a variety of common mechanical system components so as to perform safely their intended functions.	 Lectures, Self-Learning Problems/Studies, Case study, Individual/Group Project and Studies, Active learning, Computer hands-on sessions. 	 Oral & Writing Exams Individual Projects and Studies Reports, Assignments 		
b2.	Creatively thinking and apply proper stress and strain analysis techniques to obtain exact solutions for a variety of complex problems in structural mechanics and design of machine elements.	 Lectures, Self-Learning Problems/Studies, Case study, Individual/Group Project and Studies, Active learning, Computer hands-on sessions. 	 Oral & Writing Exams Individual Projects and Studies Reports, Assignments 		
b3.	Combining strength of material analysis together with failure theory in order to design a safe structure.	 Lectures, Self-Learning Problems/Studies, Case study, 	 Oral & Writing Exams Individual Projects and Studies 		

b4.	Conduct failure analysis to determine the safety of a structure in the	 Computer hands-or sessions. Lectures, Self-Learning 	• Oral & Writing Exams
	mechanical engineering contexts.	 Problems/Studies, Case study, Individual/Group Projects and Studies, Active learning, Computer hands-or sessions. 	 Individual Projects and Studies Reports, Assignments
•	Alignment of Professional and Practics	al Skills CILOs:	
	Professional and Practical Skills CILOs	Teaching Strategies	Assessment Strategies
c1.	Use numerical methods and modern computational tools to construct a suitable finite element model for a given solid mechanics problem.	 Lectures, Self-Learning Problems/Studies, Case study, Individual/Group Projects and Studies, Active learning, Computer hands-on sessions. 	 Oral & Writing Exams Individual Projects and Studies Reports, Assignments
•	Alignment of Transferable (General) S	Skills CILOs:	
	Transferable (General) Skills CILOs	Teaching Strategies	Assessment Strategies
d1.	Effectively communicate, present and prepare documentations on stress and strain analysis activities to different audiences in contexts.	 Independent Study, Individual/Group Projects and Studies, Presentation, 	Presentation,Written Report
d2.	Undertake lifelong learning of the developments in the field of advanced solid mechanics and engineering materials.	 Independent Study, Individual/Group Projects and Studies, 	Presentation,Written Report.

• Co	Course Content						
Theoretical Aspect							
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs		
1	Chapter 1: Analysis of Stress	 Introduction Scope of Treatment Analysis and Design Conditions of Equilibrium Definition and Components of Stress Internal Force-Resultant and Stress Relations Stresses on Inclined Sections Variation of Stress within a Body Plane-Stress Transformation Principal Stresses and Maximum In-Plane Shear Stress 	2	6	a1, a2, a3, b1, b2, b3, b4		
		Mohr's Circle for Two-Dimensional StressThree-Dimensional Stress Transformation					

		 Principal Stresses in Three Dimensions Normal and Shear Stresses on an Oblique Plane Mohr's Circles in Three Dimensions 			
2	Chapter 2: Strain and Material Properties	 Introduction (HW 1) Deformation & Strain Defined Equations of Compatibility State of Strain at a Point Engineering Materials Stress-Strain Diagrams Elastic versus Plastic Behavior Hooke's Law and Poisson's Ratio Generalized Hooke's Law Hooke's Law for Orthotropic Materials Measurement of Strain: Strain Rosettes Strain Energy Strain Energy in Common Structural Members Components of Strain Energy Saint-Venart's Principle 	2	6	a1, a2, a3, b1, b2, b3, b4
3	Chapter 3: Problems in Elasticity	 Introduction (HW 2, Quiz 1) Fundamental Principles of Analysis Formulations and Methods of Solutions Plain Strain Problems Plain Stress Problems Comparison of Two-Dimensional Isotropic Problems Aery's Stress Function Solution of Elasticity Problems Thermal Stresses Basic Relations in Polar Coordinates Stresse Due to Concentrated Loads Stress Concentration Factors 	1	3	a1, a2, a3, b1, b2, b3, b4
4	Chapter 4: Statics Failure Criteria	 Introduction (HW 3) Failure defined & Modes Failure by Yielding Failure by Fracture Yield Criteria Maximum Shearing Stress Theory Maximum Distortion Energy Theory Octahedral Shearing Stress Theory Comparison of Yielding Theories Fracture Criteria Maximum Principal Stress Theory Mohr's Theory Coulomb-Mohr Theory Review for Midterm Exam 	1	3	a1, a2, a3, b1, b2, b3, b4
5	Chapter 5: Bending of Beams	 Mid-Term Theoretical Exam Introduction (HW 4) Part A — Exact Solutions Pure Bending of Beams of Symmetrical Cross Section Pure Bending of Beams of Asymmetrical Cross Section Bending of a Cantilever of Narrow Section Bending of Simply Supported Narrow Beam Part B – Approximate Solutions Elementary Theory of Bending Normal and Shear Stresses Composite Beams Shear Center Statically Indeterminate Systems 	2	6	a1, a2, a3, b1, b2, b3, b4

		 Energy Methods for Deflections Part C – Curved Beams Elasticity Theory Curved Beam Formula Comparison of the Results of Various Theories Combined Tangential and Normal Stresses 			
6	Chapter 6: Torsion of Prismatic Bars	 Introduction (HW 5) Elementary Theory of Torsion of Stresses on Inclined Planes General Solution of the Torsion Problem Prandtl's Stress Function Prandtl's Membrane Analogy Torsion of Narrow Rectangular Cross Section Torsion of Multiply Connected Thin Walled Sections Fluid Flow Analogy and Stress Concentration Torsion of Restrained Thin-Walled Members of Open Cross Section 	1	3	a1, a2, a3, b1, b2, b3, b4
7	Chapter 7: Numerical Methods	 Introduction (HW6, Quiz 2) Part A – Finite Difference Method Finite Differences Finite Difference Equations Curved Boundaries Boundary Conditions Part B – Finite Element Method Fundamentals The Bar Element Arbitrarily Oriented Bar Element Axial Force Equation Force Displacement Relations for a truss Beam Element Properties of Two-Dimensional Elements General Formulation of the Finite Element Method Triangular Finite Element Computational Tools Case Studies in Plane Stress 	1	3	a1, a2, a3, b1, b2, b3, b4, c1
8	Chapter 8: Thick-Walled Cylinders and Rotating Disks	 Cuse Studies in Filme Stress Introduction (HW 7) Thick Walled Cylinders Under Pressure Maximum Tangential Stress Application of Failure Theories Compound Cylinders: Press or Shrink Fits Rotating Disks of Constant Thickness. Disk Flywheels Finite Element Solution 	1	3	a1, a2, a3, b1, b2, b3, b4, c1
9	Chapter 9: Applications of Energy Methods	 Introduction (HW 8) Work Done in Deformation Reciprocity Theorem Part A — Displacements by Energy Principles Castigliano's Theorem Unit- or Dummy-Load Method Crotti-Engesser Theorem Statically Indeterminate Systems Part B — Variational Principles Principle of Virtual Work Principle of Minimum Potential Energy Deflections by Trigonometric Series Rayleigh-Ritz Method 	1	3	a1, a2, a3, b1, b2, b3, b4, c1

10	Chapter 10: Introduction to Fatigue & Fracture Mechanics	 Introduction (HW 9, Quiz 3) Nomenclature Cyclic Stress-Strain Behavior of Metals Cyclic Stress-Strain Curve S - N Diagram and Stress Life Relation Fatigue Strength Diagram (Haigh diagram) Endurance Limit Modifying Factor Failure Criteria for Metal Fatigue Impact or Dynamic Loads Dynamic and Thermal Effects Fracture Mechanics Fracture Toughness & Fracture Modes Stress Intensity Factor (SIF or K) Superposition of SIF Fracture Toughness (Critical SIF Strain Energy Release Rate and Its Equivalent to SIF Plastic Zone Size 	2	6	a1, a2, a3, b1, b2, b3, b4, c1
11	Chapter 11: Plastic Behavior of Materials	 Introduction (HW 10) Plastic Deformation Idealized Stress-Strain Diagrams Instability in Simple Tension Plastic Axial Deformation and Residual Stress Plastic Deflection of Beams Analysis of Perfectly Plastic Beams Collapse Load of Structures: Limit Design Elastic-Plastic Torsion of Circular Shafts Plastic Torsion: Membrane Analogy Elastic-Plastic Stresses in Rotating Disks Plastic Stress-Strain Increment Relations Stresses in Perfectly Plastic Thick-Walled Cylinders 	1	3	a1, a2, a3, b1, b2, b3, b4, c1
12	Final Theoretical Exam	All Previous Topics	1	3	a1, a2, a3, b1, b2, b3, b4, c1
	Number of Wee	ks /and Contact Hours Per Semester	16	48	

•	Practical Aspect					
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs		
1	 None 					
	Number of Weeks /and Contact Hours Per Semester					

•	Tutorial Aspect:			
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)
1	• None			
	Number of Weeks /and Units Per Semester			

• Teaching Strategies:

- Lectures,
- Self-Learning Problems/Studies,
- Case study,
- Individual Projects and Studies,
- Active learning,
- Computer hands-on sessions.
- Independent Study, and
- Presentation

• Assessment Methods of the Course:

- Oral & Writing Exams
- Individual/Group Projects and Studies Reports,
- Presentation,
- Assignments

•	Tasks and Assignments:						
No	Assignments/ Tasks	Individual/ Group	Mark	Week Due	CILOs (symbols)		
1	Homework (10 sets)	Individual	10	W2, W4. W6, W8 & W9 - W15	a1, a2, a3, b1, b2, b3, b4, c1		
2	Mini/Major Project	Group	15	W9 - W15	a1, a2, a3, b1, b2, b3, b4, c1, d1, d2		
3	Case studies	Group	5	W3, W6, W10	b1, b2, b3, b4, c1, d1, d2		
	Total Score		30	==			

•]	Learning Assessment:						
No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment	CILOs		
1	Tasks and Assignments	Weekly	30	20%	a1, a2, a3, b1, b2, b3, b4, c1, d1, d2		
2	Quizzes	W5, W10 & W13	10	6.7%	a1, a2, a3, b1, b2, b3, b4, c1		
3	Midterm Exam (Theoretical)	W8	30	20%	a1, a2, a3, b1, b2, b3, b4, c1		
4	Final Exam (Theoretical)	W16	80	53.3%	a1, a2, a3, b1, b2, b3, b4, c1		
	Total 150 100% ===						

• Learning Resources :
1. Required Textbook(s) :
1. Ugural, A. C. and S. K. Fenster, 2014, Advanced Mechanics of Materials and Applied
Elasticity, 6th Edition, USA, Prentice Hall.
2. Essential References:
1. Arthur P. Boresi, Richard J. Schmidt, 2003, Advanced Mechanics of Materials, 6th
Edition, USA, John Wiley and Sons.
2. L S Srinath, 2009, Advanced mechanics of solids, 3rd Edition, New Delhi, Tata McGraw-
Hill.
3. Richard G. Budynas, 1999, Advanced Strength and Applied Stress Analysis, 2nd
Edition, USA, McGraw Hill.
4. H. Jane Helena, 2017, Theory of Elasticity and Plasticity, New Delhi, PHI.
5. Craig, R.R, 2011, Mechanics of Materials, 3rd Edition, John Wiley & Sons.
6. Logan, D.L., 2011, A First Course in the Finite Element Methods, 5th Edition, CL
Engineering.
3. Electronic Materials and Web Sites <i>etc.</i>
1. <u>https://www.youtube.com/watch?v=HM7ZMPpbeDA</u>
2. <u>http://freevideolectures.com/Course/89/Fluid-Mechanics</u>
3. <u>https://www.youtube.com/watch?v=QEyUNvtZkH0</u>
4. <u>https://www.youtube.com/watch?v=QKCK4lJLQHU</u>
5. <u>https://www.av8n.com/how/htm/airfoils.html</u>
6. http://faculty.dwc.edu/sadraey/Chapter%205.%20Wing%20Design.pdf

 الضوابط والسياسات المتبعة في المقرر Course Policies 	
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:	į
سياسة حضور الفعاليات التعليمية Class Attendance:	1
 يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. 	
 يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم 	
اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
- يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات يحذر	

شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
- لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان - إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
التعيينات والمشاريع Assignments & Projects:	4
- يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها. - إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.	
الغش Cheating:	5
- في حال تُبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شوّون الطلاب. - في حال تُبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.	
الانتحال Plagiarism:	6
- في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك	
سیاسات آخری Other policies:	7
 أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ 	

Academic Year:

Course Plan (Syllabus) Advanced Mechanics of Solid and Materials Course Code (ME511)

• Information about Faculty Member Responsible for the Course:							
Name		Office Hours					
Location &Telephone No.		SAT	SUN	MON	TUE	WED	THU
E-mail							

	• General information about the course:							
	Course Title	Advanced Mechanics of Solid and Materials						
2.	Course Code and Number	ME511						
			Credit H	ours	Total			
3.	Credit Hours	Lecture	Practical	Seminar/Tutorial	Totai			
		3			3			
4.	Study Level and Semester	1 st Level / 1 st	st Semester					
5.	Pre-requisites	ME 234						
6.	Co –requisite	ME 501 & N	ME 502					
7.	Program (s) in which the course is offered	s MSc. In Mechanical Engineering Program						
8.	Language of teaching the course	English						
9.	Location of teaching the course	Faculty Buildings						

• Course Description:

This course provides graduates the theoretical knowledge of stress and strain and advanced concepts of mechanics of materials to solve mechanical design problems and enable any component to be designed such that it will not fail within its service life. The course covers: 3-D analysis of stress and strain, equilibrium and compatibility equations, 3-D Hooke's law, 2-D problems in elasticity, failure criteria, numerical methods, energy methods, fatigue and fracture mechanics and plastic behavior of materials. Students will be able to apply gained knowledge and techniques to the stress analysis of curved beams, beams on elastic foundations, asymmetric beams, torsion of prismatic elements, thick-walled cylinders and rotating disks.

• Course Intended Learning Outcomes (CILOs):

Upon successful completion of Advanced Solid Mechanics and Engineering Materials Course, the graduates will be able to:

- **a1.** Transformation of a physical problem into a mathematical problem to enable estimations of stress and deformation as well as safety assessment concerning the response of materials and structural elements to various applied loads.
- **a2.** Acquire an in-depth understanding of advanced concepts, principles and solution techniques of elasticity and plasticity to analyze stress and strain of loaded members throughout the design of

various machine elements and systems.

- **a3.** Provide an in-depth understanding of failure modes and criteria, analysis methods and numerical approaches while concerning the design of a safe structure.
- **b1.** Apply elasticity, plasticity, and numerical analysis principles and methods to a variety of common mechanical system components so as to perform safely their intended functions.
- **b2.** Creatively thinking and apply proper stress and strain analysis techniques to obtain exact solutions for a variety of complex problems in structural mechanics and design of machine elements.
- **b3.** Combining strength of material analysis together with failure theory in order to design a safe structure.
- **b4.** Conduct failure analysis to determine the safety of a structure in the mechanical engineering contexts.
- **c1.** Use numerical methods and modern computational tools to construct a suitable finite element model for a given solid mechanics problem.
- **d1.** Effectively communicate, present and prepare documentations on stress and strain analysis activities to different audiences in contexts.
- **d2.** Undertake lifelong learning of the developments in the field of advanced solid mechanics and engineering materials.

Course Content:								
	Theoretical Aspect:							
Order	Units	Sub Topics	Week Due	Contact Hours				
	Chapter 1: Analysis of	 Introduction Scope of Treatment Analysis and Design Conditions of Equilibrium Definition and Components of Stress Internal Force-Resultant and Stress Relations Stresses on Inclined Sections Variation of Stress within a Body 	W1	3				
1	501 655	 Plane-Stress Transformation Principal Stresses and Maximum In-Plane Shear Stress Mohr's Circle for Two-Dimensional Stress Three-Dimensional Stress Transformation Principal Stresses in Three Dimensions Normal and Shear Stresses on an Oblique Plane Mohr's Circles in Three Dimensions 	W2	3				
2	Chapter 2: Strain and Material Properties	 Introduction (HW 1) Deformation & Strain Defined Equations of Compatibility State of Strain at a Point Engineering Materials Stress-Strain Diagrams Elastic versus Plastic Behavior Hooke's Law and Poisson's Ratio Generalized Hooke's Law 	W3	Contact Hours				
		 Hooke's Law for Orthotropic Materials Measurement of Strain: Strain Rosettes Strain Energy Strain Energy in Common Structural Members Components of Strain Energy Saint-Venart's Principle 	W4	3				
3	Chapter 3: Problems in Elasticity	 Introduction (HW 2, Quiz 1) Fundamental Principles of Analysis Part A – Formulations and Methods of Solutions Plain Strain Problems Plain Stress Problems Comparison of Two-Dimensional Isotropic Problems Aery's Stress Function Solution of Elasticity Problems Thermal Stresses Basic Relations in Polar Coordinates Stress Due to Concentrated Loads Stress Concentration Factors 	W5	3				
4	Chapter 4: Statics Failure Criteria	 Introduction (HW 3) Failure defined & Modes Failure by Yielding Failure by Fracture Yield Criteria Maximum Shearing Stress Theory Maximum Distortion Energy Theory Octahedral Shearing Stress Theory Comparison of Yielding Theories Fracture Criteria Maximum Principal Stress Theory 	W6	3				

		Mohr's Theory		
		 Coulomb-Mohr Theory Review for Midterm Exam 		
		Mid-Term Theoretical Evam	W7	2
		Introduction (HW 4)	•••	4
5	Chapter 5: Bending of Beams	 Part A — Exact Solutions Pure Bending of Beams of Symmetrical Cross Section Pure Bending of Beams of Asymmetrical Cross Section Bending of a Cantilever of Narrow Section Bending of Simply Supported Narrow Beam Part B – Approximate Solutions Elementary Theory of Bending Normal and Shear Stresses Composite Beams 	W8	4
		 Shear Center Statically Indeterminate Systems Energy Methods for Deflections Part C – Curved Beams Elasticity Theory Curved Beam Formula Comparison of the Results of Various Theories Combined Tangential and Normal Stresses 		
6	Chapter 6: Torsion of Prismatic Bars	 Introduction (HW 5) Elementary Theory of Torsion of Stresses on Inclined Planes General Solution of the Torsion Problem Prandtl's Stress Function Prandtl's Membrane Analogy Torsion of Narrow Rectangular Cross Section Torsion of Multiply Connected Thin Walled Sections Fluid Flow Analogy and Stress Concentration Torsion of Restrained Thin-Walled Members of Onen Cross Section 	W9	3
7	Chapter 7: Numerical Methods	 Introduction (HW6, Quiz 2) Part A – Finite Difference Method Finite Differences Finite Difference Equations Curved Boundaries Boundary Conditions Part B – Finite Element Method Fundamentals The Bar Element Arbitrarily Oriented Bar Element Axial Force Equation Force Displacement Relations for a truss Beam Element Properties of Two-Dimensional Elements General Formulation of the Finite Element Method Triangular Finite Element Case Studies in Plane Stress Computational Tools 	W10	3
8	Chapter 8: Thick- Walled Cylinders and Rotating Disks	 Introduction (HW 7) Thick Walled Cylinders Under Pressure Maximum Tangential Stress Application of Failure Theories Compound Cylinders: Press or Shrink Fits Rotating Disks of Constant Thickness. Disk Flywheels Finite Element Solution 	W11	3

		Reciprocity Theorem Part A — Displacements by Energy Principles C		
9	Chapter 9: Applications of Energy Methods	 Castigliano's Theorem Unit- or Dummy-Load Method Crotti-Engesser Theorem Statically Indeterminate Systems Part B — Variational Principles Principle of Virtual Work Principle of Minimum Potential Energy Deflections by Trigonometric Series Rayleigh-Ritz Method 	W12	3
10	Chapter 10: Introduction to Fatigue & Fracture	 Introduction (HW 9, Quiz 3) Nomenclature Cyclic Stress-Strain Behavior of Metals Cyclic Stress-Strain Curve S - N Diagram and Stress Life Relation Fatigue Strength Diagram (Haigh diagram) Endurance Limit Modifying Factor Failure Criteria for Metal Fatigue Impact or Dynamic Loads Dynamic and Thermal Effects Fracture Mechanics 	W13	3
	Mechanics	 Fracture Toughness & Fracture Modes Stress and Displacement Field at the Crack Tip Stress Intensity Factor (SIF or K) Superposition of SIF Fracture Toughness (Critical SIF Strain Energy Release Rate and Its Equivalent to SIF Plastic Zone Size 	W14	3
11	Chapter 11: Plastic Behavior of Materials	 Introduction (HW 10) Plastic Deformation Idealized Stress-Strain Diagrams Instability in Simple Tension Plastic Axial Deformation and Residual Stress Plastic Deflection of Beams Analysis of Perfectly Plastic Beams Collapse Load of Structures: Limit Design Elastic-Plastic Torsion of Circular Shafts Plastic Torsion: Membrane Analogy Elastic-Plastic Stresses in Rotating Disks Plastic Stress-Strain Relations Plastic Stress-Strain Increment Relations Stresses in Perfectly Plastic Thick-Walled Cylinders 	W15	3
10	Final Theoretical	All Previous Topics	W16	3
12	Exam	r · · · · · · · · · · · · · · · · · · ·		

	Practical Aspect					
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs		
1	• None					
	Number of Weeks /and Contact Hours Per Semester					

•	Training/ Tutorials/ Exercises Aspects:					
Order	Tutorials/ Exercises	Week Due	Contact Hours			
1	• None					
Num	Number of Weeks /and Contact Hours Per Semester					

• Teaching Strategies:

- Lectures,
- Self-Learning Problems/Studies,
- Case study,
- Individual Projects and Studies,
- Active learning,
- Computer hands-on sessions.
- Independent Study, and
- Presentation

• Assessment Methods of the Course:

- Oral & Writing Exams
- Individual/Group Projects and Studies Reports,
- Presentation,
- Assignments

	Tasks and Assignments:					
No	Assignments	Individual /Groups	Mark	Week Due		
1	Homework (10 sets)	Individual	10	W2, W4. W6, W8 & W9 - W15		
2	Mini/Major Project	Group	15	W9 - W15		
3	Case studies	Group	5	W3, W6, W10		
	Total Score		30			

• Learning Assessment:						
No	Assessment Method	Week Due	Mark	Proportion of Final Assessment %		
1	Tasks and Assignments	Weekly	30	20%		
2	Quizzes	W5, W10 & W13	10	6.7%		
3	Midterm Exam (Theoretical)	W8	30	20%		
4	Final Exam (Theoretical)	W16	80	53.3%		
	Total		150	100%		

• Learning Resources:

	1. Required Textbook(s) :				
2.	Ugural, A. C. and S. K. Fenster, 2014, Advanced Mechanics of Materials and Applied				
	Elasticity, 6th Edition, USA, Prentice Hall.				
2.	Essential References:				
5.	Arthur P. Boresi, Richard J. Schmidt, 2003, Advanced Mechanics of Materials, 6th				
	Edition, USA, John Wiley and Sons.				
6.	L S Srinath, 2009, Advanced mechanics of solids, 3rd Edition, New Delhi, Tata McGraw-				
	Hill.				
7.	Richard G. Budynas, 1999, Advanced Strength and Applied Stress Analysis, 2nd				
	Edition, USA, McGraw Hill.				
8.	H. Jane Helena, Theory of Elasticity and Plasticity, New Delhi, PHI.				
9.	9. Craig, R.R, 2011, Mechanics of Materials, 3rd Edition, John Wiley & Sons.				
10.	10. Logan, D.L., 2011, A First Course in the Finite Element Methods, 5th Edition, CL				
	Engineering.				
3.	Electronic Materials and Web Sites etc.				
1.	https://www.youtube.com/watch?v=HM7ZMPpbeDA				
2.	http://freevideolectures.com/Course/89/Fluid-Mechanics				
3.	https://www.youtube.com/watch?v=QEyUNvtZkH0				
4.	https://www.youtube.com/watch?v=QKCK4lJLQHU				
5.	https://www.av8n.com/how/htm/airfoils.html				
6.	http://faculty.dwc.edu/sadraey/Chapter%205.%20Wing%20Design.pdf				

الضوابط والسياسات المتبعة في المقرر Course Policies			
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:	ł		
ياسة حضور الفعاليات التعليمية Class Attendance:			
 يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. 			
 يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للفسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم 			
اقرار الحرمان من مجلس القسم.			
الحضور المتأخر Tardy:	2		
ـ يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات يحذر			
شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.			
ضوابط الامتحان Exam Attendance/Punctuality:	3		
ـ لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان			
- إذا تغيب الطالب عن الامتحان النهائي تُطبق اللوائح الخاصة بنظام الامتحان في الكلية.			
التعيينات والمشاريع Assignments & Projects:	4		
- يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها.			
– إذا تأخر الطالب في تسليم التكليفات عن ألموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.			
الغش Cheating:	5		
- في حال تُبوت قيام الطالب بالغش أو النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.			
الانتحال Plagiarism:	6		
_ في حالة وجود شخص بنتحل شخصية طالب لأداء الامتحان نبابة عنه تطبق اللائحة الخاصة بذلك			
ا سياسات آخري، Other policies:	7		
- أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ	,		

