<u>14-</u> Course Specification of Automation in Manufacturing Systems Course Code (ME517)

•	General Information About the Course:						
1.	Course Title:	Automation in Manufacturing Systems					
2.	Course Code and Number:	ME517					
		Credit Hours			Tatal		
3.	Credit Hours:	Lecture	Practical	Seminar/Tutorial	Total		
		3			3		
4.	Study Level and Semester:	1 st Level / 2nd Semester (Elective)					
5.	Pre-requisites (if any):	ME233					
6.	Co-requisites (if any):	ME516					
7.	Program (s) in which the course is offered:	MSc. In Mechanical Engineering Program					
8.	Language of teaching the course:	English					
9.	Study System:	Courses & Thesis					
10.	Prepared By:	Dr. Khalil	Al-Hatab				
11.	Reviewed by:	Dr					
12.	Date of Approval:						

• Course Description:

This course intends to provide the in-depth knowledge of essential automation processes, methods, technologies, components and scenarios for control energy; material; and information flows in the modern manufacturing systems. The course covers: CNC centres, robotics, PLC, automation materials handling systems, single station automated cells, automated assembly lines, GT and FMS. Graduates will perform a term-project tasks in groups and offer a step-by-step design process on an automated system taken from different manufacturing domains. Which enables them to get a hands-on experience; develop problem solving and collaboration skills and achieve outstanding results and display their career-readiness in a valid, measurable format.

• Course Intended Learning Outcomes (CILOs):

Upon successful completion of Automation in Manufacturing Systems Course, the graduates will be able to:

- **a1.** Define and list basic elements and components of automation and describe its concepts, strategies, levels, and applications in manufacturing contexts.
- **a2.** Explain advantages and disadvantages and various reasons for employing automation and evaluate contemporary automation technologies, developments and emerging trends in a manufacturing environment.
- **a3.** Describe the fundamentals, basic anatomy, attributes and function of an automated system as whole (CNC, robotics...) or as its components (sensors, actuators and other control system components) and give examples of both categories.
- **b1.** Recognize characteristics, constructional and operational details, interfaces and current developments and technologies relevant to automation in manufacturing systems.
- **b2.** Practice and create quantitative analysis and innovative solutions for a complex automation problem in manufacturing within realistic constrains.
- **b3.** Design automated systems and assess their operational errors and recovery procedures within realistic constrains, standards and practices to meet defined operational specifications.
- **c1.** Select and integrate an appropriate sensor, actuators and other control system components and develop computer-programs and codes while constructing a useful automated system.
- **c2.** Research and summarize a unique technology and/or application in the design of an automated system to meet defined operational specifications.
- **d1.** Communicate effectively ideas, work procedures, analysis and results of the project/case studies in both written and orally forms with a range of audiences.
- **d2.** Undertake lifelong learning of the developments in the field of industrial automated system.
- **d3.** Support a team effort through effectively manage tasks; time; processes; resources to study, design and analysis of an industrial automated system.

• Alignment of Course Intended Learning Outcomes (CILOs) to Program Intended Learning Outcomes (PILOs)

	CILOs	PILOs		
• Kno	wledge and Understanding: Upon successful	• Knowledge and Understanding: Upon		
com	pletion of Automation in Manufacturing	successful completion of the MSc. In		
Syst	ems Course, the graduates will be able to:	Mechanical Engineering Program, the		
		graduates will be able to:		
a1.	Define and list basic elements and components	A1. Acquire advanced concepts and		
	of automation and describe its concepts,	knowledge of mathematics, scientific,		
	strategies, levels, and applications in	mechanical engineering and associated		
	manufacturing contexts.	technologies as well as across the boundaries		
		of interdisciplinary disciplines.		
a2.	Explain advantages and disadvantages and	A2. Identify and critically evaluate		
	various reasons for employing automation and	contemporary engineering technologies,		
	evaluate contemporary automation	current developments and emerging trends		
	technologies, developments and emerging	within the mechanical engineering contexts.		
	trends in a manufacturing environment.			

a3.	Describe the fundamentals, basic anatomy and attributes and basic function of an automated	A3. Provide a holistic description of principles, concepts, approaches, techniques
	system as whole (CNC, robotics) or as its components (sensors, actuators and other control system components) and give examples	and analysis tools to design and development of existing and novel mechanical systems, while taking a
	of both categories.	sustainable and environmentally-friendly approach.
• Cog	nitive/ Intellectual Skills: Upon successful	• Cognitive/ Intellectual Skills: Upon
com Syst	pletion of the Automation in Manufacturing rems Course, the graduates will be able to:	successful completion of the MSc. In Mechanical Engineering Program, the graduates will be able to:
b1.	Recognize characteristics, constructional and operational details, interfaces and current developments and technologies relevant to automation in manufacturing systems.	B1. Identify and apply specialized knowledge and skills to solve problems that are critical to future growth of industry and business.
b2.	Practice and create quantitative analysis and innovative solutions for a complex automation problem in manufacturing within realistic constrains.	B2. Creatively thinking and apply analysis tools to formulate and solve complex engineering problems in the mechanical engineering context using modern techniques and tools.
b3.	Design automated systems and assess their operational errors and recovery procedures within realistic constrains, standards and practices to meet defined operational specifications.	B3. Design and optimize mechanical components, systems and process to meet desired needs within realistic constraints.
b4.		B4. Analyze and assess risks of the professional practice in the mechanical engineering contexts.
Prof	fessional and Practical Skills: Upon successful	• Professional and Practical Skills: Upon
com Syst	pletion of the Automation in Manufacturing tems Course, the graduates will be able to:	successful completion of the MSc. In Mechanical Engineering Program, the graduates will be able to:
c1.	Select and integrate an appropriate sensor, actuators and other control system components and develop computer-programs and codes while constructing a useful automated system.	C1. Use modern manufacturing processes and materials, experimental tests, appropriate software packages and other modern tools for the design analysis and manufacture of mechanical components and systems.
c2.	Research and summarize a unique technology and/or application in the design of an automated system to meet defined operational specifications.	C2. Conduct research and studies to solve mechanical engineering problems professionally, ethically and responsibly within realistic constraints.
c3.		C3. Demonstrate an in-depth understanding of the mechanical engineering business environment, including environmental aspects, and apply quality issues, modern operations and business management

		techniques and good practices in a range of		
		contexts.		
c4.				
• Tra	nsferable Skills: Upon successful completion of	• Transferable Skills: Upon successful		
the	Automation in Manufacturing Systems	completion of the MSc. In Mechanical		
Соц	rse. the graduates will be able to:	Engineering Program. the graduates will		
		be able to:		
		D1. Adopt effectively 11 capabilities and		
		other different resources of information to		
		develop a scientific research in mechanical		
		engineering fields.		
d1.	Communicate effectively ideas, work	D2. Communicate, present, challenge and		
	procedures, analysis and results of the	defend research ideas, results and		
	project/case studies in both written and orally	conclusions in both orally and writing forms		
	forms with a range of audiences.	to different audiences in contexts.		
d2.	Undertake lifelong learning of the	D3 Identify a need for the latest relevant		
	developments in the field of industrial	knowledge and technologies and undertake		
	developments in the neid of industrial	life-long learning		
	automated system.			
d3.	Support a team effort through effectively	D4. Collaborate effectively within		
	manage tasks; time; processes; resources to	multidisciplinary teams and lead them in		
	study, design and analysis of an industrial	different professional contexts		
	automated system			
d2.	procedures, analysis and results of the project/case studies in both written and orally forms with a range of audiences. Undertake lifelong learning of the developments in the field of industrial automated system. Support a team effort through effectively manage tasks; time; processes; resources to study, design and analysis of an industrial automated system.	 defend research ideas, results and conclusions in both orally and writing forms to different audiences in contexts. D3. Identify a need for the latest relevant knowledge and technologies and undertake life-long learning. D4. Collaborate effectively within multidisciplinary teams and lead them in different professional contexts 		

• A	Alignment of CILOs to Teaching and Assessment Strategies							
•	Alignment of Knowledge and Understanding CILOs:							
	Assessment Strategies							
a1.	Define and list basic elements and components of automation and describe its concepts, strategies, levels, and applications in manufacturing contexts.	 Lectures, Students' Presentations Class Discussion Self-Learning Problems/Studies, Case Study, Individual/Group Projects 	 Quizzes & Writing Exams Projects Reports, Homework Assignments. 					
a2.	Explain advantages and disadvantages and various reasons for employing automation and evaluate contemporary automation technologies, developments and emerging trends in a manufacturing environment.	 Lectures, Students' Presentations Class Discussion Self-Learning Problems/Studies, Case Study, Individual/Group Projects Active Learning, 	 Quizzes & Writing Exams Projects Reports, Homework Assignments. 					
a3.	Describe the fundamentals, basic anatomy and attributes and basic function	Lectures,Students'	Quizzes & Writing Exams					

	of an automated system as whole (CNC robotics) or as its components (sensors actuators and other control system components) and give examples of both categories.	PresentationsProjects Reports,Class DiscussionHomeworkSelf-LearningAssignments.Problems/Studies,Case Study,Individual/Group ProjectsActive Learning,
•	Alignment of Intellectual Skills CILOs	
	Intellectual Skills CILOs	Teaching Strategies Assessment Strategies
D1.	Recognize characteristics, constructional and operational details, interfaces and current developments and technologies relevant to automation in manufacturing systems.	 Lectures, Self-Learning Problems/Studies, Case study, Individual/Group Projects and Studies, Active learning, Simulation Software Application Quizzes & Writing Exams Projects Reports, Homework Assignments Students' Seminars and Presentations. Case Study Reports
b2.	Practice and create quantitative analysis and innovative solutions for a complex automation problem in manufacturing within realistic constrains.	 Lectures, Self-Learning Problems/Studies, Case study, Individual/Group Projects and Studies, Active learning, Simulation Software Application. Quizzes & Writing Exams Projects Reports, Homework Assignments Students' Seminars and Presentations.
b3.	Design automated systems and assess their operational errors and recovery procedures within realistic constrains, standards and practices to meet defined operational specifications.	 Lectures, Self-Learning Problems/Studies, Case Study, Individual/Group Projects and Studies, Active Learning, Simulation Software Application. Quizzes & Writing Exams Projects Reports, Homework Assignments Students' Seminars and Presentations. Case Study Reports.
•	Alignment of Professional and Practica	l Skills CILOs:
]	Professional and Practical Skills CILOs	Teaching Strategies Assessment Strategies
c1.	Select and integrate an appropriate sensor, actuators and other control system components and develop computer-programs and codes while constructing a useful automated system.	 Individual/Group Projects and Studies, Active Learning, Case Study Analysis Projects Reports, Homework Assignments Specific Assignments. Written reports. Students' Seminars and Presentations.

c2.	Research and summarize a unique technology and/or application in the design of an automated system to meet defined operational specifications.	 Self-Learning Problems/Studies, Individual/Group Projects and Studies, Active Learning, Computer Hands-on Sessions. Case Study Analysis 	 Projects Reports, Specific Assignments. Written Reports. Students' Seminars and Presentations.
•	Alignment of Transferable (General) S	Skills CILOs:	
	Transferable (General) Skills CILOs	Teaching Strategies	Assessment Strategies
d1.	Communicate effectively ideas, work procedures, analysis and results of the project/case studies in both written and orally forms with a range of audiences.	 Independent Study, Individual/Group Projects and Studies, Presentation, 	Presentation,Written Report
d2.	Undertake lifelong learning of the developments in the field of industrial automated system.	 Independent Study, Individual/Group Projects and Studies, 	Presentation,Written Report.
d3.	Support a team effort through effectively manage tasks; time; processes; resources to study, design and analysis of an industrial automated system.	 Individual/Group Projects and Studies, 	Presentation,Written Report.

Course Content								
•	Theoretical Aspect							
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs			
1	Chapter 1: Introduction to Automation	 Course Introduction Definition of Automation Advantages & Disadvantages of Automation Automation in Production Systems Identify Types of Automation Reasons for Automating Automation Principles & Strategies Basic Concept of Automation Terminology (i.e.; Link, Joint, DOF, Orientation Axes, Position Axes, TCP, etc.) Positioning Concept of Automation (Accuracy and Repeatability, Control Resolution and Payload). Challenges of Process Automation Basic Component of an Automation System Function of an Automation Systems Safety Monitoring Maintenance & Repair Diagnostics Error Detection & Recovery Levels of Automation 	2	6	a1, a2, a3, b1, b2, b3, c1, c2, d1			
2	Chapter 2: Overview of Manufacturing Operations & Systems	 Manufacturing Industries and Products Manufacturing Operations Production Facilities Product/Production Relationships Production Performance Metrics Manufacturing Costs Overview of Manufacturing Systems Components of a Manufacturing System Types of Manufacturing Systems 	1	3	a1, a2, a3, b1, b2, b3, c1, c2, d1			
3	Chapter 3: Design of Industrial Automation Systems	 Automation System in an Application Automation Design and process specifications 1. System Specifications 2. Mechanical Description of the Automation 3. Motion Sequence 4. Motor and Drive Mechanism Selection Encoder Selection Control Structure 	1	3	a1, a2, a3, b1, b2, b3, c1, c2, d1			

4	Chapter 4: Mechanical System: Components, Dynamics & Modeling	 Elementary Mechanical Concepts Translation or Linear Motion Rotational Motion Mechanical Work and power Motion Conversion Rotary to Rotary Motion Conversion Rotary to Linear Motion Conversion Linkages Couplers The Concept of Power Transfer Modeling of Mechanical System Elements, Rules and Nomenclature Translational Example Rotational Example Electrical Analog End Effectors The Grapping Problem Remote Centered Compliance Devices 	1	3	a1, a2, a3, b1, b2, b3, c1, c2, d1
5	Chapter 5: Automation Sensors & Actuators	 Sensor Characteristics Sensor Classification Angular and Linear Position Sensors Velocity and Acceleration Sensors Contact Sensor Distance and Velocity Sensor Electrical Motors Actuators Solenoid Actuators Solenoid Actuators Hydraulic Actuators Pneumatic Actuators Apply Control Method of Actuators Relays Analog/Digital Conversions I/O Devices for Discrete Data 	2	6	a1, a2, a3, b1, b2, b3, c1, c2, d1
6	Chapter 6: Industrial Control Systems	 Mid-Term Exam (Theoretical) Process Industries Versus Discrete Manufacturing Industries Continuous Control Regulatory Control Feedforward Control Steady-State Optimization Adaptive Control On-Line Search Strategies Other Specialized Techniques 	2	6	a1, a2, a3, b1, b2, b3, c1, c2, d1

		 Computer Process Control Forms of Computer Process Control Computer Process Monitoring Direct Digital Control Distributed Control System Programmable Logic Controllers Supervisory Control and Data Acquisition PCs in Process Control Discrete Process Control Logic Control Sequence Control 			
7	Chapter 7: Computer Numerical Control	 Fundamentals of NC Technology Computers and Numerical Control Applications of NC Analysis of Positioning Systems NC Part Programming 	1	3	a1, a2, a3, b1, b2, b3, c1, c2, d1
8	Chapter 8: Industrial Robotics & Programmable Logic Controllers (PLCs)	 Industrial Robotics Robot Anatomy and Related Attributes Robot Control Systems Applications of Industrial Robots Robot Programming Programmable Logic Controllers (PLCs) Ladder Logic Diagrams Programmable Logic Controllers Personal Computers and Programmable Automation Controllers 	1	3	a1, a2, a3, b1, b2, b3, c1, c2, d1
9	Chapter 9: Material Handling & Identification Systems	 Overview of Material Handling Material Transport Equipment Analysis of Material Transport Systems Storage Systems Conventional Storage Methods and Equipment Automated Storage Systems Analysis of Storage Systems Overview of Automatic Identification Method Radio Frequency Identification Other AIDC Technologies 	1	3	a1, a2, a3, b1, b2, b3, c1, c2, d1

 Group Technology & Cellular Manufacturing Part Families and Machine Groups Cellular Manufacturing Applications of Group Technology Analysis of Cellular Manufacturing Flexible Manufacturing Cells & Systems Manufacturing Flexibility Defined FMC/FMS Components FMS Application Considerations Analysis of Flexible Manufacturing Systems Analysis of Flexible Manufacturing Systems Alternative Approaches to Flexible Manufacturing Manufacturing

11	Final Exam (Theoretical)	All Previous Topics	1	3	a1, a2, a3, b1, b2, b3, c1, c2, d1
	Number of Week	s /and Contact Hours Per Semester	16	48	

•	Practical Aspect						
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs			
1	• None						
	Number of Weeks /and Contact Hours Per Semester						

•	Tutorial Aspect:						
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)			
1	None						
	Number of Weeks /and Units Per Semester						

• Teaching Strategies:

- Lectures,
- Self-Learning Problems/Studies,
- Case study,
- Individual Projects and Studies,
- Active learning,
- Computer hands-on sessions.
- Independent Study, and
- Presentation

• Assessment Methods of the Course:

- Oral & Writing Exams
- Individual/Group Projects and Studies Reports,
- Presentation,
- Assignments

•	Tasks and Assignments:				
No	Assignments/ Tasks	Individual/ Group	Mark	Week Due	CILOs (symbols)
1	Homework Assignments (10 sets)	Individual	10	Weekly	a1, a2, a3, b1, b2, b3, c1, c2, d1
2	 Group Design Projects: Objective: Students will learn how to design an integrated manufacturing system by selecting and building a complete integrated system from beginning to end. Method: The basic steps are outlined below, 1. Course begins 2. Students groups will submit a proposal for a project within the first three weeks. 3. The instructor will review the proposal, and suggest changes as necessary. 4. During the term students will design, build and test their proposed projects. 5. In the last week of classes the final project will be demonstrated and formally presented. Group Design Projects (1 total): Students groups are required to design an example for industrial automation system. Design should include: a. Physical systems modeling (drawing, mechanism and so on) b. Sensors and actuators c. Logic control system (PLC) Choose any of those projects: 1. Adhesive Dispensing Cells 2. Assembly Assist Stations 3. Automatic Drilling / Tapping 5. Automatic Packaging 6. Automatic/Semi-Automatic and Manual Screw Driving Systems 7. Automatic Staplers Bar Code Reading 8. Rotary Assembly Systems 9. Special Machines and Fixtures Tube Benders 10. Ultrasonic Welding Equipment 	Group	20	W3, W7, W11 & W15	a1, a2, a3, b1, b2, b3, c1, c2, d1, d2, d3

11. Vision Inspection and Vision Guided			
Systems.			
12. Automatic Drilling Machine			
13. Automobile Hood Latch			
14. Hydraulic Lift			
15. Car Jack			
16. Transfer Device			
Total Score	30	==	===

•	Learning Assessment:						
No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment	CILOs		
1	Tasks and Assignments	Weekly	30	20%	a1, a2, a3, b1, b2, b3, c1, c2, d1		
2	Quizzes	W5, W10 & W13	10	6.7%	a1, a2, a3, b1, b2, b3, c1, c2, d1		
3	Midterm Exam (Theoretical)	W8	30	20%	a1, a2, a3, b1, b2, b3, c1, c2, d1		
4	Final Exam (Theoretical)	W16	80	53.3%	a1, a2, a3, b1, b2, b3, c1, c2, d1		
	Total		150	100%	===		

• Learning Resources :

1 Required Textbook(s) :

 Groover, M. P.,2015, Automation, Production Systems, and Computer-Integrated Manufacturing, 4th Edition, USA, Pearson Education.
 2 Essential References:

Frank L., 2013, Industrial Automation-Hands-On, New York, McGraw-Hill Education

Chanchal D., Sunit K. S., 2020, **Industrial Automation Technologies**, First Edition, Boca Raton and London, Taylor & Francis Group, LLC.

Daniel E. Kandray, P.E., 2010, **Programmable Automation Technologies an Introduction to CNC, Robotics and PLCs**, 1st Edition, New York, Industrial Press Inc.

Terry B., 2011, Industrial Automated Systems Instrumentation and Motion Control, 1st Edition, USA, Delmar, Cengage Learning.

Thomas Boucher, 2002, Computer Control of Manufacturing systems, Springer Ver-lag.

Richard C. Dorf and Andrew Kusiak, 1994, Handbook of design, manufacturing and automation, John Wiley & Sons, Inc.

Shimon Y. Nof editor, 2009, Springer Handbook of Automation, Springer-Verlag Berlin

Η	ei	de	lb	er	g
					$\boldsymbol{\omega}$

3 Electronic Materials and Web Sites etc.

Websites:

1- Journals:

- 1. International Journal of Automation and Computing
- 2. Journal of Automation and Information Sciences.
- 3. Journal of Design and Manufacturing Automation

2- Software/Learning Websites

- (1) PLC simulator
- (2) DCS simulator

3- Learning Websites

- i. <u>www.control.com</u>
- ii. <u>www.plcs.net</u>
- iii. www.pacontrol.com
- iv. En.wikipedia.org
- v. www.seimens.com
- vi. www.ab.rockwellautomation.com > Allen-Bradley
- vii. www.abb.co.in
- viii. . <u>www.triplc.com</u>
 - ix. http://plc-training-rslogix-simulator.soft32.com/free-download/
 - x. www.youtube.com
 - xi. www.ourinstrumentationgroup.com
- xii. www.plcsimulator.net/
- xiii. <u>http://scada.winsite.com</u>

الضوابط والسياسات المتبعة في المقرر Course Policies	
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:	ł
سياسة حضور الفعاليات التعليمية Class Attendance:	1
 يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. 	Ì
ا - يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم	1
اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
د يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات يحذر	
شفوياً من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	1
ضوابط الامتحان Exam Attendance/Punctualit <u>t:</u>	3
ـ لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان	ĺ
- إذا تغيب الطالب عن الامتحان النهائي تُطبق اللوائح الخاصة بنظام الامتحان في الكلية.	1
التعيينات والمشاريع Assignments & Projects:	4
- يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها.	ĺ
– إذا تأخر الطالب في تسليم التكليفات عن ألموعد المحدد يحرم من درجة التكليف ألذي تأخر في تسليمه.	
الغش Cheating:	5
· · · · · · · · · · · · · · · · · · ·	

- في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب.	
 في حال ثبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف. 	
الانتحال Plagiarism:	6
– في حالة وجود شخص يتحل شخصية طالب لاداء الامتحان بيابة عنه نطبق اللائحة الخاصة بذلك	
سیاسات أخری Other policies:	7
 أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ 	

Academic Year:

<u>Course Plan (Syllabus) Automation in Manufacturing Systems</u> <u>Course Code (ME517)</u>

• Information about Faculty Member Responsible for the Course:							
Name		0	ffice Ho	ours			
Location &Telephone No.		SAT	SUN	MON	TUE	WED	THU
E-mail							

	General information about the course:					
	Course Title	Automation	in Manufactur	ring Systems		
2.	Course Code and Number	ME517				
			Total			
3.	Credit Hours	Lecture	Practical	Seminar/Tutorial	Totai	
		3			3	
4.	Study Level and Semester	1 st Level / 2	nd Semester (E	Elective)		
5.	Pre-requisites	ME233				
6.	Co –requisite	ME516				
7.	Program (s) in which the course is offered	MSc. In Mechanical Engineering Program				
8.	Language of teaching the course	English				
9.	Location of teaching the course	Faculty Bui	dings			

• Course Description:

This course intends to provide the in-depth knowledge of essential automation processes, methods, technologies, components and scenarios for control energy; material; and information flows in the modern manufacturing systems. The course covers: CNC centres, robotics, PLC, automation materials handling systems, single station automated cells, automated assembly lines, GT and FMS. Graduates will perform a term-project tasks in groups and offer a step-by-step design process on an automated system taken from different manufacturing domains. Which enables them to get a hands-on experience; develop problem solving and collaboration skills and achieve outstanding results and display their career-readiness in a valid, measurable format.

• Course Intended Learning Outcomes (CILOs):

Upon successful completion of Automation in Manufacturing Systems Course, the graduates will be able to:

- **a1.** Define and list basic elements and components of automation and describe its concepts, strategies, levels, and applications in manufacturing contexts.
- **a2.** Explain advantages and disadvantages and various reasons for employing automation and evaluate contemporary automation technologies, developments and emerging trends in a manufacturing environment.

- **a3.** Describe the fundamentals, basic anatomy, attributes and function of an automated system as whole (CNC, robotics...) or as its components (sensors, actuators and other control system components) and give examples of both categories.
- **b1.** Recognize characteristics, constructional and operational details, interfaces and current developments and technologies relevant to automation in manufacturing systems.
- **b2.** Practice and create quantitative analysis and innovative solutions for a complex automation problem in manufacturing within realistic constrains.
- **b3.** Design automated systems and assess their operational errors and recovery procedures within realistic constrains, standards and practices to meet defined operational specifications.
- **c1.** Select and integrate an appropriate sensor, actuators and other control system components and develop computer-programs and codes while constructing a useful automated system.
- **c2.** Research and summarize a unique technology and/or application in the design of an automated system to meet defined operational specifications.
- **d1.** Communicate effectively ideas, work procedures, analysis and results of the project/case studies in both written and orally forms with a range of audiences.
- **d2.** Undertake lifelong learning of the developments in the field of industrial automated system.
- **d3.** Support a team effort through effectively manage tasks; time; processes; resources to study, design and analysis of an industrial automated system.

• (Course Content:							
	Theoretical Aspect	:						
Order	Units	Sub Topics	Week Due	Contact Hours				
		 Course Introduction Definition of Automation Advantages & Disadvantages of Automation Automation in Production Systems Identify Types of Automation Reasons for Automating Automation Principles & Strategies 	W1	3				
1	Chapter 1: Introduction to Automation	 Basic Concept of Automation Terminology (i.e.; Link, Joint, DOF, Orientation Axes, Position Axes, TCP, etc.) Positioning Concept of Automation (Accuracy and Repeatability, Control Resolution and Payload). Challenges of Process Automation Basic Component of an Automation System Function of an Automation Systems Safety Monitoring Maintenance & Repair Diagnostics Error Detection & Recovery Levels of Automation 	W2	3				
2	Chapter 2: Overview of Manufacturing Operations & Systems	 Manufacturing Industries and Products Manufacturing Operations Production Facilities Product/Production Relationships Production Performance Metrics Manufacturing Costs Overview of Manufacturing Systems Components of a Manufacturing Systems Types of Manufacturing Systems 	W3	3				
3	Chapter 3: Design of Industrial Automation Systems	 Automation System in an Application Automation Design and process specifications System Specifications Mechanical Description of the Automation Motion Sequence Motor and Drive Mechanism Selection Encoder Selection Control Structure 	W4	3				
4	Chapter 4: Mechanical System: Components, Dynamics & Modeling	 Elementary Mechanical Concepts Translation or Linear Motion Rotational Motion Mechanical Work and power Motion Conversion Rotary to Rotary Motion Conversion 	W5	3				

• (Course Content:						
	Theoretical Aspect	:					
Order	Units	Sub Topics	Week Due	Contact Hours			
		 Rotary to Linear Motion Conversion Linkages Couplers The Concept of Power Transfer Modeling of Mechanical System Elements, Rules and Nomenclature Translational Example Rotational Example Electrical Analog End Effectors The Grapping Problem Remote Centered Compliance Devices 					
	Chapter 5:	 Sensor Characteristics Sensor Classification Angular and Linear Position Sensors Velocity and Acceleration Sensors Contact Sensor Distance and Velocity Sensor 	W6	3			
5	Automation Sensors & Actuators	 Electrical Motors Actuators Solenoid Actuators Hydraulic Actuators Pneumatic Actuators Apply Control Method of Actuators Relays Analog/Digital Conversions I/O Devices for Discrete Data 	W7	3			
		 Mid-Term Exam (Theoretical) Process Industries Versus Discrete Manufacturing Industries Continuous Control Regulatory Control Feedforward Control Steady-State Optimization Adaptive Control On-Line Search Strategies Other Specialized Techniques 	W8	3			
6	Chapter 6: Industrial Control Systems	 Computer Process Control Forms of Computer Process Control Computer Process Monitoring Direct Digital Control Distributed Control System Programmable Logic Controllers Supervisory Control and Data Acquisition PCs in Process Control Discrete Process Control Logic Control Sequence Control 	W9	3			

Course Content:					
Theoretical Aspect:					
Order	Units	Sub Topics	Week Due	Contact Hours	
7	Chapter 7: Computer Numerical Control	 Fundamentals of NC Technology Computers and Numerical Control Applications of NC Analysis of Positioning Systems NC Part Programming 	W10	3	
8	Chapter 8: Industrial Robotics & Programmable Logic Controllers (PLCs)	 Industrial Robotics Robot Anatomy and Related Attributes Robot Control Systems Applications of Industrial Robots Robot Programming Programmable Logic Controllers (PLCs) Ladder Logic Diagrams Programmable Logic Controllers Personal Computers and Programmable Automation Controllers 	W11	3	
9	Chapter 9: Material Handling & Identification Systems	 Overview of Material Handling Material Transport Equipment Analysis of Material Transport Systems Storage Systems Conventional Storage Methods and Equipment Automated Storage Systems Analysis of Storage Systems Overview of Automatic Identification Method Radio Frequency Identification Other AIDC Technologies 	W12	3	
10	Chapter 10: Manufacturing Systems	 Single-Station Manufacturing Cells Single-Station Manned Cells Single-Station Automated Cell Applications of Single-Station Cells Analysis of Single-Station Cells Manual Assembly Lines Fundamentals of Manual Assembly Lines Analysis of Single-Model Assembly Lines Line Balancing Algorithms Workstation Details 	W13	3	
		 Automated Production Lines 	W14	3	

• (Course Content:					
•	Theoretical Aspect:					
Order	Units	Sub Topics	Week Due	Contact Hours		
		 Fundamentals of Automated Production Lines Applications of Automated Production Lines Analysis of Transfer Lines Automated Assembly Systems Fundamentals of Automated Assembly Systems Analysis of Automated Assembly Systems 				
		 Group Technology & Cellular Manufacturing Part Families and Machine Groups Cellular Manufacturing Applications of Group Technology Analysis of Cellular Manufacturing Flexible Manufacturing Cells & Systems Manufacturing Flexibility Defined FMC/FMS Components FMS Application Considerations Analysis of Flexible Manufacturing Systems Alternative Approaches to Flexible Manufacturing Manufacturing Manufacturing 	W15	3		
11	Final Exam (Theoretical)	All Previous Topics	W16	3		
Number of Weeks /and Contact Hours Per Semester			16	48		

	Practical Aspect				
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs	
1	• None				
Number of Weeks /and Contact Hours Per Semester					

Training/ Tutorials/ Exercises Aspects:			
Order	Tutorials/ Exercises	Week Due	Contact Hours

1	• None		
Number of Weeks /and Contact Hours Per Semester			

Teaching Strategies: • Lectures, Students' Presentations Class Discussion Self-Learning Problems/Studies, Case Study, Individual/Group Projects Active Learning, Independent Study Simulation Software Application. •

• Assessment Methods of the Course:

- Quizzes & Writing Exams
- Projects Reports,
- Homework Assignments
- Students' Seminars and Presentations.
- Case Study Reports.
- Presentation,
- Written Report

• Tasks and Assignments: Individual No Assignments Mark Week Due /Groups Weekly 1 Homework Assignments (10 sets) Individual 10 **Group Design Projects: Objective:** Students will learn how to design an integrated manufacturing system by selecting and building a complete integrated system from beginning to end. Method: The basic steps are outlined below, 1. Course begins 2. Students groups will submit a proposal for a project within the first three weeks. 3. The instructor will review the proposal, and suggest changes as necessary. 4. During the term students will design, build and test their proposed projects. 5. In the last week of classes the final project will be demonstrated and formally presented. Group Design Projects (1 total): W3. W7. W11 & 2 20 Group Students groups are required to design an example for W15 industrial automation system. Design should include: a. Physical systems modeling (drawing, mechanism and so on) b. Sensors and actuators **c.** Logic control system (PLC) Choose any of those projects: 1. Adhesive Dispensing Cells 2. Assembly Assist Stations **3.** Automated Riveters 4. Automatic Drilling / Tapping 5. Automatic Packaging 6. Automatic/Semi-Automatic and Manual Screw **Driving Systems** 7. Automatic Staplers Bar Code Reading

	Tasks and Assignments:			
No	Assignments	Individual /Groups	Mark	Week Due
	8. Rotary Assembly Systems			
	9. Special Machines and Fixtures Tube Benders			
	10. Ultrasonic Welding Equipment			
	11. Vision Inspection and Vision Guided Systems.			
	12. Automatic Drilling Machine			
	13. Automobile Hood Latch			
	14. Hydraulic Lift			
	15. Car Jack			
	16. Transfer Device			
	Total Score		30	

	• Learning Assessment:				
No	Assessment Method	Week Due	Mark	Proportion of Final Assessment %	
1	Tasks and Assignments	Weekly	30	20%	
2	Quizzes	W5, W10 & W13	10	6.7%	
3	Midterm Exam (Theoretical)	W8	30	20%	
4	Final Exam (Theoretical)	W16	80	53.3%	
	Total		150	100%	

• Learning Resources:		
1. Required Textbook(s) :		
1. Groover, M. P.,2016, Automation, Production Systems, and Computer-Integrated Manufacturing 4th Edition USA Decrean Education		
Manufacturing, 4th Edition, USA, Fearson Education.		
2. Essential References:		
1- Frank L., 2013, Industrial Automation-Hands-On, New York, McGraw-Hill Education		
Chanchal D., Sunit K. S., 2020, Industrial Automation Technologies, First Edition, Boca Raton and London, Taylor & Francis Group, LLC.		
Daniel E. Kandray, P.E., 2010, Programmable Automation Technologies an Introduction to CNC, Robotics and PLCs , 1st Edition, New York, Industrial Press Inc.		
Terry B., 2011, Industrial Automated Systems Instrumentation and Motion Control, 1st Edition, USA, Delmar, Cengage Learning.		
Thomas Boucher, 2002, Computer Control of Manufacturing systems, Springer Ver-lag.		
Richard C. Dorf and Andrew Kusiak, 1994, Handbook of design, manufacturing and automation, John Wiley & Sons, Inc.		

1. Shimon Y. Nof editor, 2009, Springer Handbook of Automation, Springer-Verlag Berlin Heidelberg.

3. Electronic Materials and Web Sites etc.

Websites:

1- Journals:

- 1. International Journal of Automation and Computing
- 2. Journal of Automation and Information Sciences.
- 3. Journal of Design and Manufacturing Automation

2- Software/Learning Websites

- (3) PLC simulator
- (4) DCS simulator
- 3- Learning Websites
 - i. <u>www.control.com</u>
 - ii. <u>www.plcs.net</u>
 - iii. www.pacontrol.com
 - iv. En.wikipedia.org
 - v. www.seimens.com
 - vi. www.ab.rockwellautomation.com > Allen-Bradley
 - vii. www.abb.co.in
 - viii. . <u>www.triplc.com</u>
 - ix. http://plc-training-rslogix-simulator.soft32.com/free-download/
 - x. <u>www.youtube.com</u>
 - xi. www.ourinstrumentationgroup.com
 - xii. www.plcsimulator.net/
 - xiii. http://scada.winsite.co

 الضوابط والسياسات المتبعة في المقرر Course Policies 	
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:	2
سياسة حضور الفعاليات التعليمية Class Attendance:	1
 لتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. 	
- يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم	
اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
ـ يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات يحذر	
شفوياً من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
ـ لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان	
- إذا تغيب الطالب عن الامتحان النهائي تُطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
التعيينات والمشاريع Assignments & Projects:	4
_ يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها.	
– إذا تأخر الطالب في تسليم التكليفات عن ألموعد المحدد يحرم من درجة التكليف ألذي تأخر في تسليمه.	
الغش Cheating:	5
 _ في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شوّ ون الطلاب.	
- في حال تبوت قيام الطالب بالغش أو النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف	
الانتحال Plagiarism:	6
	×

- في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك	
سیاسات آخری Other policies:	7
 أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ 	