<u>Course Specification of</u>: Modeling and Simulation of Engineering Systems

Course Code: (MTE543)

•General Information About the Course:						
85.	Course Title:	Mode	eling and Si	mulation of Engine Systems	ering	
86.	Course Code and Number:			MTE543		
		Credit Hours Total				
87.	Credit Hours:	Lecture	Practical	Seminar/Tutorial	Totai	
		3	0	0	3	
88.	Study Level and Semester:	Second Semester				
00	Pre-requisites (if any):	- Numerical Analysis				
0 9.		- Mathematics (Differential Equations)				
90.	Co-requisites (if any):	None				
91.	Program (s) in which the course is offered:	MSc. In Mechatronics Engineering Program				
92.	Language of teaching the course:	English				
93.	Study System:	Courses & Thesis				
94.	Prepared By:	Dr. Hatem Al-Dois				
95.	Reviewed by:	Dr				
96.	Date of Approval:					

•Course Description:

Modeling and Simulation methods are widely employed in various branches of Engineering. In fact, many engineering systems and operating processes can be approximated by mathematical models, allowing to predict their future trends or infer their current state. This course is intended to present several approaches towards model identification problems, in order to help students solve experimental modeling problems in mechatronics and other related areas. Students will learn the theoretical and practical knowledge of methods to develop mathematical models for systems from different domains either from physical insight or experimental data. Parametric and non-parametric identification methods, transient response analysis. frequency response analysis. spectrum analysis, correlation analysis and Identification Methods Based on Probabilistic Approaches are introduced. In addition, modeling solutions to various engineering applications are practiced and examined.

•Course Intended Learning Outcomes (CILOs):

- **a1.** Explain various mathematical methods for building models of mechatronics systems based on physical principles and measured data.
- a2. List different types of engineering systems models and modeling techniques.
- **a3.** Describe the parametric and non-parametric identification techniques to obtain mathematical models for mechatronics systems.
- **a4.** Explain how numerical methods are used for modern system identification.
- **b1.** Compare and contrast different valid models for the system, and justify the final model choice.
- **b2.** Construct mathematical models of mechatronics systems and components from first principles and measured data manually as well as with the help of computer tools.
- **b3.** Analyze statistical properties of basic modeling and estimation techniques, and clarify the practical significance of these properties.
- c1. Perform various validation tests of mathematically constructed mechatronics models.
- c2. Propose and implement solutions to simple identification problems.
- c3. Use computer simulation tools to model and examine mechatronic system designs.
- **c4.** Apply the complete procedure to identify a simulated unknown industrial SISO process with noise.
- d1. Outline the structure of a formal technical report with proper referencing.
- **d2.** Plan and carry out activities in a way which makes optimal use of available time and other resources.
- d3. Deliver high-quality presentations and demonstrate presentation skills.
- **d4.** Develop an independent learning capability that leads to a thorough knowledge and practice in the field.

•Alignment of Course Intended Learning Outcomes (CILOs) to Program Intended Learning Outcomes (PILOs)

	CILOs		PILOs		
gg.	Knowledge and Understanding: Upon successful completion of the Modeling and Simulation of Engineering Systems Course , the graduates will be able to:	GG. Up In Pro	Knowledge and Us on successful completion Mechatronics Ogram, the graduates w	nderstanding: on of the MSc. Engineering vill be able to:	
a1.	Explain various mathematical methods for building models of mechatronics systems based on physical principles and measured data.	A1. D u n en cu	Demonstrate in-depth nderstanding of appli- nathematics in Mecha ngineering, control sy omputer engineering	ed tronics /stem, and science,	

		and electronics to design more functional, adaptable and cost- effective products.
a2.	List different types of engineering systems models and modeling techniques.	A2. Recognize and explain the contemporary engineering technologies and issues in the field of Mechatronics engineering.
a3.	Describe the parametric and non-parametric identification techniques to obtain mathematical models for mechatronics systems.	A3. Explain in-depth the principles of sustainable design and development of Mechatronics engineering.
a4.	Explain how numerical methods are used for modern system identification.	A4. Demonstrate research principles and methods applicable to the field of work or academic in Mechatronics engineering and related fields.
hh.	Cognitive/ Intellectual Skills: Upon	HH. Cognitive/ Intellectual Skills:
	successful completion of the Modeling and	Upon successful completion of the MSc.
	Simulation of Engineering Systems Course,	In Mechatronics Engineering
h 1	the graduates will be able to:	Program, the graduates will be able to:
D1.	Compare and contrast different valid models for the system, and justify the final model choice.	B1. Apply appropriate principles, methodologies, techniques, tools and packages in the analysis, development and evaluation of mechatronics engineering systems.
b2.	Construct mathematical models of mechatronics systems and components from first principles and measured data manually as well as with the help of computer tools.	B2. Identify, formulate and analyze research and solve complex Mechatronics engineering problems.
b3.	Analyze statistical properties of basic modeling and estimation techniques, and clarify the practical significance of these properties.	B3. Design Mechatronics system, component, or process to meet desired needs within realistic constraints.
ii.	Professional and Practical Skills:Uponsuccessful completion of theModeling andSimulation of Engineering Systems Course,the graduates will be able to:	II. Professional and Practical Skills:Upon successful completion of the MSc.InMechatronicsEngineeringProgram, the graduates will be able to:

c1.	Perform various validation tests of mathematically constructed mechatronics models.	C1. Conduct research to solve mechatronics engineering problems.
c2.	Propose and implement solutions to simple identification problems.	C2. Use advanced methodologies and skills to solve Mechatronics engineering problems.
c3.	Use computer simulation tools to model and examine mechatronic system designs.	C2. Use advanced methodologies and skills to solve Mechatronics engineering problems.
c4.	Apply the complete procedure to identify a simulated unknown industrial SISO process with noise.	C3. Apply acquired knowledge of analysis and design for mechatronics engineering systems and implementation process.
jj.	TransferableSkills:Uponsuccessfulcompletion of theModeling and SimulationofEngineeringSystemsCourse, thegraduates will be able to:	JJ. Transferable Skills: Upon successful completion of the MSc. In Mechatronics Engineering Program, the graduates will be able to:
d1.	Outline the structure of a formal technical report with proper referencing.	D1. Prepare a complete thesis and term-courses works/ tasks, write their documents and defend on them.
d2.	Plan and carry out activities in a way which makes optimal use of available time and other resources.	D2. Demonstrate ethical principles, awareness of professional and ethical responsibility as well as knowledge of the standards utilized in related fields.
d3.	Deliver high-quality presentations and demonstrate presentation skills.	D3. Conduct independently and communicate research that advances and extends knowledge and scholarship in related fields.
d4.	Develop an independent learning capability that leads to a thorough knowledge and practice in the field.	D4. Independent learning ability, self- direction and independence leading to the ability to continue to develop their knowledge understanding and skills through further professional development

•A	•Alignment of CILOs to Teaching and Assessment Strategies				
gg	. Alignment of Knowledge and Und	erstanding CILOs:			
K	nowledge and Understanding CILOs	Teaching Strategies	Assessment Strategies		
al.	Explain various mathematical methods for building models of mechatronics systems based on physical principles and measured data.	Lectures,Active learning.	Written Exam,Reports,Assignments		
a2.	List different types of engineering systems models and modeling techniques.	 Lectures, Self-Learning Problems/Studies, Case study, Active learning. 	 Oral & Writing Exams Reports, Survey. 		
a3.	Describe the parametric and non- parametric identification techniques to obtain mathematical models for mechatronics systems.	 Lectures, Self-Learning Problems/Studies, Case study, Active learning. 	Reports,Written Exam,Assignments		
a4.	Explain how numerical methods are used for modern system identification.	 Lectures, Self-Learning Problems/Studies. 	Reports,Written Exam.		
hł	Alignment of Intellectual Skills CI	LOs:			
	Intellectual Skills CILOs	Teaching Strategies	Assessment Strategies		
b1.	Compare and contrast different valid models for the system, and justify the final model choice.	 Lectures, Self-Learning, Simulation Exercises, Analysis and Problem Solving, Brainstorming. 	Written Exam,Assignments.		
b2.	Construct mathematical models of mechatronics systems and components from first principles and measured data manually as well as with the help of computer tools.	 Lectures, Self-Learning, Case Study, Simulation Exercises, Independent Study. 	Reports,Written Exam,Assignments		
b3.	Analyze statistical properties of basic modeling and estimation techniques, and clarify the practical significance of these	 Case Study, Simulation Exercises, Independent Study, Analysis and Problem 	 Reports, Survey, Written Exam, Assignments 		

•Alignment of CILOs to Teaching and Assessment Strategies					
	properties.	Solving,			
		 Brainstorming. 			
ii	. Alignment of Professional and Pra	ctical Skills CILOs:			
P	rofessional and Practical Skills CILOs	Teaching Strategies	Assessment Strategies		
c1.	Perform various validation tests of mathematically constructed mechatronics models.	 Case Study, Simulation Exercises, Independent Study, Analysis and Problem Solving. 	 Written Research Proposal. 		
c2.	Propose and implement solutions to simple identification problems.	 Simulation Exercises, Independent Study, Analysis and Problem Solving. 	Seminar Report,Written Research Proposal.		
c3.	Use computer simulation tools to model and examine mechatronic system designs.	 Case Study, Simulation Exercises, Independent Study, Analysis and Problem Solving. 	 Seminar Report. 		
c4.	Apply the complete procedure to identify a simulated unknown industrial SISO process with noise.	 Case Study, Independent Study, Analysis and Problem Solving, Presentations, 	 Seminar Report, Written Research Proposal. 		
jj	. Alignment of Transferable (Gener	al) Skills CILOs:			
	Transferable (General) Skills CILOs	Teaching Strategies	Assessment Strategies		
d1.	Outline the structure of a formal technical report with proper referencing.	 Presentation, Presenting Researches, Publish Research Papers. 	Survey,Presentation,Written Report.		
d2.	Plan and carry out activities in a way which makes optimal use of available time and other resources.	 Presentation, Presenting Researches.	Assignments,Written Report.		
d3.	Deliver high-quality presentations and demonstrate presentation skills.	 Presentation, Presenting Researches.	Presentation,Written Report.		
d4.	Develop an independent learning capability that leads to a thorough knowledge and practice in the field.	Independent Study,Brainstorming.	Assignments,Presentation,Written Report.		

•C	•Course Content				
26.	Theoretical Aspect				-
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs
1	Introduction	 Fundamental Concepts Use and scope of mathematical modeling, Principles of model formulation, Classification of models, Model building, Modeling difficulties, 	1	3	a1, a2
2	Mathematical Modeling of Systems from Different Domains	 Principles of mathematical modeling Block diagram models Differential equations The transfer function Modeling of electrical networks Modeling of linear & rotational mechanical systems Modeling of fluid and thermal systems TF for electromechanical system Electric circuit analogy 	1	3	a1, a2, a4
3	Model Identification: Principles and Applications	 Identification problems in linear and non-linear systems. Overview of parametric and non- parametric methods. Mathematical models for dynamic or stochastic systems. Plausible application fields and practical examples. 	1	3	a1, a3, b1
4	Identification Methods Based on Spectral Analysis	 Static spectral analysis in Fourier transform domain. Resolution enhancement approaches (STFT, IpDFT). Non-periodicity and truncation effects in discrete time. Dynamic extension through Taylor series expansion. Measurement uncertainty and Cramer-Rao bounds. 	1	3	a3, b1, b2, b3, c1
5	Identification Methods Based on	- Properties of Auto- and Cross- correlation functions.	1	3	a3, b1, b2, b3,

•C	•Course Content					
26.	Theoretical Aspect		Number of	Contact	Course	
Order	Topic List / Units	Sub -Topics List	Weeks	Hours	ILOs	
	Correlation Analysis	 Influence of stochastic disturbances on correlation. Definition of system impulse response by deconvolution. Auto-regressive integrated moving average (ARIMA) predictors. Proper setting to avoid excessive smoothing and stationarization. Influence of noise model on prediction accuracy. 			c1	
6	Identification Methods Based on Parametric Models	 Fundamentals of Weighted Least Squares (WLS) estimator. Estimates covariance and model uncertainty. Parameter identifiability: criteria and conditions. Tikhonov regularization to avoid ill-posed problems. Two-stages LS approximation in non-parametric conditions. WLS-based approximation of system frequency response. 	2	6	a3, b1, b2, b3, c1, c2	
7	Mid-Term Exam	- Previous Topics	1	3	a1, b1, b2, b3, c1, c2	
8	Identification Methods Based on Probabilistic Approaches	 Bayes and Maximum-Likelihood estimation (MLE). Cramer-Rao bounds and estimation reliability. Gauss-Markov model: linearity and uncorrelation. Particle filters: non-linear process models. Particle filters: non-normal covariance noises. 	1	3	a3, b1, b2, b3, c2, c4	
9	Identification Methods for	 Polynomial approximation. Differentiability constraint. Kernel-based identification. 	1	3	a3, b1, b2, b3,	

Course Content					
26. Order	Theoretical Aspect Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs
	Dynamic Non- Linear Systems	- Hammerstain-Wiener models.			c1, c2, c4
10	Application: State Estimation in Electrical Power Grids	 Power system modeling as stochastic process. State estimation measurement and process. WLS-based static state estimation. KF-based recursive state estimation. Particle filter-based state estimation. 	1	3	b2, b3, c1, c2, c3, d4
11	Approximation of Unknown Power Spectral Density – Practical Application	 Modeling of dynamic stochastic process Computation examples Estimation uncertainty 	1	3	b2, b3, c1, c2, c3
12	Linear WLS Approach for Grid State Estimation – Practical Application	 State estimation problem formulation Suitable tuning of weights matrix Measurement uncertainty effect 	1	3	b2, b3, c1, c2, c3
13	Kalman filter Model to Track a Dynamic Process – Practical Application	 First-order state model Second-order state model Suitable probability thresholds 	1	3	b2, b3, c1, c2, c3
14	Particle Filter Estimation of The System Internal State	 Two-steps recursive procedure Suitable selection of process model (grid) Suitable selection of noise model (measurements) 	1	3	b2, b3, c1, c2, c3
15	Final Exam	- All Topics	1	3	a1, b1, b2, b3, c1, c2

•C	•Course Content				
26.	Theoretical Aspect				
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs
Number of Weeks /and Contact Hours Per Semester			16	48	

27.	27. Practical Aspect				
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs	
1	None				
Number of Weeks /and Contact Hours Per Semester					

28.	. Tutorial Aspect:			
No.	Tutorial	Number of Weeks	Contact Hours	Course ILOs
1	None			
Number of Weeks /and Units Per Semester				

•Teaching Strategies:

- Lectures,
- Self-Learning Problems/Studies,
- Case study,
- Active learning,
- Simulation Exercises,
- Analysis and Problem Solving,
- Brainstorming,
- Independent Study,
- Publish Research Papers,
- Presenting Researches,
- Presentation.

•Assessment Methods of the Course:

- Written Exam,
- Reports,
- Survey,
- Oral & Writing Exams

•Assessment Methods of the Course:

- Assignments,
- Written Research Proposal,
- Seminar Report
- Survey,
- Presentation,
- Written Report.

T•	•Tasks and Assignments:					
No.	Assignments/ Tasks	Individual/ Group	Mark	Week Due	CILOs (symbols)	
1	 Identification Mini-project Projects can be done individually but preferably in group of 2 to 3 students. Students will be asked to build a complete mathematical model of a mechatronics system of their choice (subjected to the approval of the course instructor). The model must be simulated and the results should be analyzed and verified. <i>Results Delivery:</i> The result of the course project will be a scientific paper (minimum 5 pages) along with part of the source code developed to solve a given problem (if any). IEEE Manuscript Template must be used. 	Group 2-3 students or Individual	20	14	b2, b3, c1, c2, c3, c4, d1, d2, d3, d4	
	Total Score		20			

•]	•Learning Assessment:					
No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment	CILOs	
1	Tasks and Assignments	14	20	20%	b2, b3, c1, c2, c3, c4, d1, d2,	
2	Midterm Exam (Theoretical)	8	20	20%	a1, b1, b2, b3, c1, c2	
3	Final Exam (Theoretical)	16	60	60%	a1, b1, b2, b3, c1, c2	
	Total		100	100%		

•Learning Resources :

24.Required Textbook(s) :

- 6- P. P. J. van den Bosch & AC van der Klauw, 2020, Modeling, Identification and Simulation of Dynamical Systems 1st Edition, CRC Press, FL-USA.
- 7- Rolf Johansson, 1993, System Modeling and Identification, 1st Edition, Prentice-Hall International, NJ-USA.

25.Essential References:

- L. Ljung and T. Glad, 1994, Modeling of Dynamic Systems, 1st Edition, Prentice Hall, NJ-USA.
- 2- L. Ljung, 1999, System Identification: Theory for the User, 2nd Edition, Prentice Hall, NJ-USA.
- 3- Dean C. Karnopp, Donald L. Margolis, Ronald C. Rosenberg, 2003, System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems, 5th Edition, Wiley, N.Y., USA.
- 4- A. Lindquist & G. Picci, 2015, Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification, 1st Edition, Springer, NY-USA.
- 5- Roland Toth, 2010, Modeling and Identification of Linear Parameter-Varying Systems, 1st Edition, Springer, NY-USA.
- 6- Devendra K. Chaturvedi, 2002, Modeling and Simulation of Systems Using MATLAB and Simulink, , CRC Press, FL-USA.

26.Electronic Materials and Web Sites etc.

Websites:

- 1- KTH | EL1820 Modelling of Dynamical Systems Course at KTH, (Sweden) https://www.kth.se/student/kurser/kurs/EL2820?l=en
- 2- Kurssida: System Identification Course at Chalmers University of Technology (Sweden) <u>https://www.chalmers.se/sv/institutioner/e2/Sidor/default.aspx</u>
- 3- Systems Control Demonstrations at Johns Hopkins University http://www.jhu.edu/~signals/

Journals:

- 1- International Journal of Modelling and Simulation, Taylor & Frances <u>https://www.tandfonline.com/toc/tjms20/current</u>
- 2- International Journal of Engineering Systems Modelling and Simulation, Inderscience Enterprises

https://www.inderscience.com/jhome.php?jcode=ijesms

- 3- Discrete Event Dynamic Systems Theory and Applications, , Springer <u>https://link.springer.com/journal/10626</u>
- 4- International Journal of Simulation Modeling, DAAAM International <u>http://www.ijsimm.com/</u>
- 5- The World Journal of Modeling and Simulation, World Academia Press <u>http://www.wjms.org.uk/</u>

ضوابط والسياسات المتبعة في المقرر Course Policies	مالم
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:	1
سياسة حضور الفعاليات التعليمية Class Attendance:	1
- يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. - يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
- يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
- لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان - إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
التعيينات والمشاريع Assignments & Projects:	4
- يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها. - إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.	
الغش Cheating:	5
- في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شوّون الطلاب. - في حال ثبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.	
الانتحال Plagiarism:	6
– في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك	
سیاسات آخری Other policies:	7
 أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ 	

Academic Year: 2021-2022

<u>Course Plan (Syllabus</u>): Modeling and Simulation of Engineering

Systems

• Information about Faculty Member Responsible for the Course:							
Name	Dr. Hatem Al-Dois	0	office Ho	ours			
Location &Telephone No.	774677493	SAT	SUN	MON	TUE	WED	THU
E-mail	haldois@yah.com						

•	• General information about the course:						
10.	Course Title	Modelin	g and Simula	tion of Engineering	Systems		
11.	Course Code and Number			MTE543			
		Credit Hours Total					
12.	Credit Hours	Lecture	Practical	Seminar/Tutorial	Totai		
		3	0	0	3		
13.	Study Level and Semester	First Semester					
14	Pre-requisites	- Numerical Analysis					
17.		- Mathematics (Differential Equations)					
15.	Co –requisite	None					
16.	Program (s) in which the course is offered	MSc. In Mechatronics Engineering Program					
17.	Language of teaching the course	English					
18.	Location of teaching the course	Faculty of E	ngineering, Sa	na'a University			

•Course Description:

Modeling and Simulation methods are widely employed in various branches of Engineering. In fact, many engineering systems and operating processes can be approximated by mathematical models, allowing to predict their future trends or infer their current state. This course is intended to present several approaches towards model identification problems, in order to help students solve experimental modeling problems in mechatronics and other related areas. Students will learn the theoretical and practical knowledge of methods to develop mathematical models for systems from

•Course Description:

different domains either from physical insight or experimental data. Parametric and non-parametric identification methods, transient response analysis. frequency response analysis. spectrum analysis, correlation analysis and Identification Methods Based on Probabilistic Approaches are introduced. In addition, modeling solutions to various engineering applications are practiced and examined.

•Course Intended Learning Outcomes (CILOs):

- **a1.** Explain various mathematical methods for building models of mechatronics systems based on physical principles and measured data.
- a2. List different types of engineering systems models and modeling techniques.
- **a3.** Describe the parametric and non-parametric identification techniques to obtain mathematical models for mechatronics systems.
- a4. Explain how numerical methods are used for modern system identification.
- b1. Compare and contrast different valid models for the system, and justify the final model choice.
- **b2.** Construct mathematical models of mechatronics systems and components from first principles and measured data manually as well as with the help of computer tools.
- **b3.** Analyze statistical properties of basic modeling and estimation techniques, and clarify the practical significance of these properties.
- c1. Perform various validation tests of mathematically constructed mechatronics models.
- c2. Propose and implement solutions to simple identification problems.
- c3. Use computer simulation tools to model and examine mechatronic system designs.
- **c4.** Apply the complete procedure to identify a simulated unknown industrial SISO process with noise.
- d1. Outline the structure of a formal technical report with proper referencing.
- **d2.** Plan and carry out activities in a way which makes optimal use of available time and other resources.
- d3. Deliver high-quality presentations and demonstrate presentation skills.
- **d4.** Develop an independent learning capability that leads to a thorough knowledge and practice in the field.

	•Course Content					
•	Theoretical Aspect					
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours		
1	Introduction	Fundamental ConceptsUse and scope of mathematical modeling,Principles of model formulation,	1	3		

	•Course Content						
•	Theoretical Aspect						
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours			
		 Classification of models, Model building, Modeling difficulties, 					
2	Mathematical Modeling of Systems from Different Domains	 Principles of mathematical modeling Block diagram models Differential equations The transfer function Modeling of electrical networks Modeling of linear & rotational mechanical systems Modeling of fluid and thermal systems TF for electromechanical system Electric circuit analogy 	1	3			
3	Model Identification: Principles and Applications	 Identification problems in linear and non- linear systems. Overview of parametric and non-parametric methods. Mathematical models for dynamic or stochastic systems. Plausible application fields and practical examples. 	1	3			
4	Identification Methods Based on Spectral Analysis	 Static spectral analysis in Fourier transform domain. Resolution enhancement approaches (STFT, IpDFT). Non-periodicity and truncation effects in discrete time. Dynamic extension through Taylor series expansion. Measurement uncertainty and Cramer-Rao bounds. 	1	3			
5	Identification Methods Based on Correlation Analysis	 Properties of Auto- and Cross-correlation functions. Influence of stochastic disturbances on correlation. Definition of system impulse response by deconvolution. Auto-regressive integrated moving average (ARIMA) predictors. 	1	3			

•Course Content							
•	Theoretical Aspect						
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours			
		 Proper setting to avoid excessive smoothing and stationarization. Influence of noise model on prediction accuracy. 					
6	Identification Methods Based on Parametric Models	 Fundamentals of Weighted Least Squares (WLS) estimator. Estimates covariance and model uncertainty. Parameter identifiability: criteria and conditions. Tikhonov regularization to avoid ill-posed problems. Two-stages LS approximation in non- parametric conditions. WLS-based approximation of system frequency response. 	2	6			
7	Mid-Term Exam	- Previous Topics	1	3			
8	Identification Methods Based on Probabilistic Approaches	 Bayes and Maximum-Likelihood estimation (MLE). Cramer-Rao bounds and estimation reliability. Gauss-Markov model: linearity and uncorrelation. Particle filters: non-linear process models. Particle filters: non-normal covariance noises. 	1	3			
9	Identification Methods for Dynamic Non- Linear Systems	 Polynomial approximation. Differentiability constraint. Kernel-based identification. Hammerstain-Wiener models. 	1	3			
10	Application: State Estimation in Electrical Power Grids	 Power system modeling as stochastic process. State estimation measurement and process. WLS-based static state estimation. KF-based recursive state estimation. Particle filter-based state estimation. 	1	3			
11	Approximation of Unknown Power	 Modeling of dynamic stochastic process Computation examples 	1	3			

	•Course Content						
•	Theoretical Aspect						
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours			
	Spectral Density – Practical Application	- Estimation uncertainty					
12	Linear WLS Approach for Grid State Estimation – Practical Application	 State estimation problem formulation Suitable tuning of weights matrix Measurement uncertainty effect 	1	3			
13	Kalman filter Model to Track a Dynamic Process – Practical Application	 First-order state model Second-order state model Suitable probability thresholds 	1	3			
14	Particle Filter Estimation of The System Internal State	 Two-steps recursive procedure Suitable selection of process model (grid) Suitable selection of noise model (measurements) 	1	3			
15	Final Exam	- All Topics	1	3			
	Number of Weeks	/and Contact Hours Per Semester	16	48			

•	Practical Aspect		
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours
1	None		
	Number of Weeks /and Contact Hours Per Semester		

•	Tutorial Aspect:		
No.	Tutorial	Number of Weeks	Contact Hours
1	None		
	Number of Weeks /and Units Per Semester		

•Teaching Strategies:

- Lectures,
- Self-Learning Problems/Studies,
- Case study,
- Active learning,
- Simulation Exercises,
- Analysis and Problem Solving,
- Brainstorming,
- Independent Study,
- Publish Research Papers,
- Presenting Researches,
- Presentation.

•Assessment Methods of the Course:

- Written Exam,
- Reports,
- Survey,
- Oral & Writing Exams
- Assignments,
- Written Research Proposal,
- Seminar Report
- Survey,
- Presentation,
- Written Report.

	•Tasks and Assignments:					
No.	Assignments/ Tasks	Individual/ Group	Mark	Week Due		
1	Identification Mini-project Projects can be done individually but preferably in group of 2 to 3 students. Students will be asked to build a complete mathematical model of a mechatronics system of their choice (subjected to the approval of the course instructor). The model must be simulated and the results should be analyzed and verified. Results Delivery:	Group 2-3 students or Individual	20	14		

	•Tasks and Assignments:			
No.	Assignments/ Tasks	Individual/ Group	Mark	Week Due
	 The result of the course project will be a scientific paper (minimum 5 pages) along with part of the source code developed to solve a given problem (if any). IEEE Manuscript Template must be used. 			
	Total Score		20	

	•Learning Assessment:							
No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment				
1	Tasks and Assignments	14	20	20%				
2	Midterm Exam (Theoretical)	8	20	20%				
3	Final Exam (Theoretical)	60	60%					
	Total		100	100%				

•Learning Resources :

4. Required Textbook(s) :

- 1- P. P. J. van den Bosch & AC van der Klauw, 2020, Modeling, Identification and Simulation of Dynamical Systems 1st Edition, CRC Press, FL-USA.
- 2- Rolf Johansson, 1993, System Modeling and Identification, 1st Edition, Prentice-Hall International, NJ-USA.

5. Essential References:

- L. Ljung and T. Glad, 1994, Modeling of Dynamic Systems, 1st Edition, Prentice Hall, NJ-USA.
- 2- L. Ljung, 1999, System Identification: Theory for the User, 2nd Edition, Prentice Hall, NJ-USA.
- 3- Dean C. Karnopp, Donald L. Margolis, Ronald C. Rosenberg, 2003, System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems, 5th Edition, Wiley, N.Y., USA.
- 4- A. Lindquist & G. Picci, 2015, Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification, 1st Edition, Springer, NY-USA.
- 5- Roland Toth, 2010, Modeling and Identification of Linear Parameter-Varying Systems, 1st Edition, Springer, NY-USA.
- 6- Devendra K. Chaturvedi, 2002, Modeling and Simulation of Systems Using MATLAB and Simulink, , CRC Press, FL-USA.

•Learning Resources :

6. Electronic Materials and Web Sites etc.

Websites:

- 1- KTH | EL1820 Modelling of Dynamical Systems Course at KTH, (Sweden) <u>https://www.kth.se/student/kurser/kurs/EL2820?1=en</u>
- 2- Kurssida: System Identification Course at Chalmers University of Technology (Sweden) https://www.chalmers.se/sv/institutioner/e2/Sidor/default.aspx
- 3- Systems Control Demonstrations at Johns Hopkins University http://www.jhu.edu/~signals/

Journals:

- 1- International Journal of Modelling and Simulation, Taylor & Frances <u>https://www.tandfonline.com/toc/tjms20/current</u>
- International Journal of Engineering Systems Modelling and Simulation, Inderscience Enterprises

https://www.inderscience.com/jhome.php?jcode=ijesms

- 3- Discrete Event Dynamic Systems Theory and Applications, , Springer <u>https://link.springer.com/journal/10626</u>
- 4- International Journal of Simulation Modeling, DAAAM International http://www.ijsimm.com/
- 5- The World Journal of Modeling and Simulation, World Academia Press <u>http://www.wjms.org.uk/</u>

•الضوابط والسياسات المتبعة في المقرر Course Policies	
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:	2
سياسة حضور الفعاليات التعليمية Class Attendance:	1
 يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. 	
 يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم 	
اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
- يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات	
يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
 لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان 	
- إذا تغيبُ الطالب عن الامتحان النهائي تُطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
التعيينات والمشاريع Assignments & Projects:	4
- يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها.	
- إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.	
الغش Cheating:	5
- في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب.	
- في حال تُبوت قيام الطالب بالغش او النقل في التكليفات والمشاريّع يحرّم من الدرجة المخصصة للتكليف.	
الانتحال Plagiarism:	6

•الضوابط والسياسات المتبعة في المقرر Course Policies	
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:	
– في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك	
سیاسات آخری Other policies <u>:</u>	7
 أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ 	

12-

Course Specification in Advance Project Management (FR502)

V.	7. Course Identification and General Information							
1	Course Title:	Advance Projec	et Managem	ent				
2	Course Code & Number:	FR502						
		Credit	Hours (CH)		Credit			
3	Credit hours:	Lecture	Laboratory	Seminars	Hours			
		3	-	-	3			
4	Study semester at which this course is offered:	Second Semeste	r					
5	Pre –requisite (if any):	-						
6	Co –requisite (if any):	None						
7	Program (s) in which the course is offered:	M.Sc. in All Eng	gineering pro	ogram				
8	Language of teaching the course:	Arabic or/ and E	Inglish					
9	Course type	Elective						
1 0	Location of teaching the course:	Faculty of Engi rooms	neering, Ma	ster progra	ms class			
1 1	Prepared By:	Prof. Dr. Eng. W	ael A. Alag	hbari				
1 2	Date of Approval							

VI. Course Description:

This course introduces the student to basic methodologies and analytical methods for project design and implementation in various industries, in addition to providing the student with a clear understanding of how to organize and manage the necessary resources within the specified scope of work, time, cost, quality requirements, and within acceptable levels of risk. This course introduces the principles of project management and their applications in various project processes. The knowledge that the student acquires from studying this course also enables the student to easily apply various management theories in their own projects to achieve results within the specified objectives.

VII.	Course Intended Learning Outcomes (CILOs)	Referenced PILOs	I, E, A
al	Demonstrate holistic understanding of the principal components and concepts of project management and	A3	A
	applications of good management practices to enhance		
b1	Evaluate project processes, and using necessary tools and effectively address the challenges that will be faced during the project, in order to make better decisions, develop and implement plans and strategies.	B3	Е
c1	Apply knowledge, skills and management techniques to solve problems, implement contemporary projects and operations effectively and efficiently.	C1	А
c2	Use core engineering management concepts flexibly in a variety of contexts to meet the important technical and management needs of private and public organizations.	C4	E
d1	Demonstrate awareness of professional and ethical responsibility during execute and manage the project processes	D1	A
d2	Gain new skills of self-development, developing effective communication and leadership skills	D4	Ι

(A) Alignment of Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

	Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
	Demonstrate holistic understanding of the	Lectures,	Multiple choice tests,
a.1	principal components and concepts of	Demonstrations,	Assignments,
	project management and applications of	Interactive class	Presentations,
	good management practices to enhance	discussion	Quizzes,
	innovation and maintain competitiveness		Exams

(B) Alignment of Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes		Teaching strategies	Assessment Strategies
b.1	Evaluate project processes, and using necessary tools and effectively address the challenges that will be faced during the project, in order to make better decisions, develop and implement plans and strategies.	Lectures, Demonstrations, Interactive class discussions	Assignments, Oral Presentations, Quizzes, Exams

(C) Alignment of Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

	Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
- 1	Apply knowledge, skills and management techniques to solve problems, implement	Lectures, Demonstrations,	Assignments, Oral Presentations,
c.1	contemporary projects and operations effectively and efficiently.	Interactive class discussions	Quizzes, Exams
c.2	Use core engineering management concepts flexibly in a variety of contexts to meet the important technical and management needs of private and public organizations.		

(D) Alignment of Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:

	Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
d.1	Demonstrate awareness of professional and ethical responsibility during execute and manage the project processes	Lectures, Demonstrations, Interactive class	Assignments, Oral Presentations, Quizzes
d.2	Gain new skills of self-development, developing effective communication and leadership skills	discussions	

VIII. Course Content

A – Le	A – Lecture Aspects							
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact Hours			
1.	Introduction: - What is a project and project management? - What is a role of Project manager, duties and responsibilities? - Purpose of Project Management	a.1, b.1, c.1, c.2, d.1, d.2	 Definition of the course plan Definition of the course topics: Benefits of project management Projects and their environment Projects, strategy, and project alignment Projects, organizational structure, and governance Project constraints: types, interdependency, and balance Project life cycles Process groups and processes Project's requirements, scope, and specification 	1	3			

			 Network of project activities and identifying the critical path Projects resources 		
2.	Project phases and project life cycle.	a.1, b.1, c.1, c.2, d.1, d.2	 The 5 phases: initiating, planning, executing, monitoring/controlling, and closing Project Initiation Phase · Project Planning Phase · Project Execution Phase · Project Monitoring/ Controlling Phase Project Close out or closing The project management life cycle should define the following aspects: What work needs to be achieved? Who will be involved in the team? What are the project deliverables? How to monitor the performance of each phase? 	1	3
3.	Project Planning	a.1, b.1, c.1, c.2, d.1, d.2	 Scope management plan Requirements management plan Project cost plan Project scheduling Resource and stakeholder's management plan Quality and risk management plan Estimation techniques 	1	3
4	Project Time management	a.1, b.1, c.1, c.2, d.1, d.2	 Creating networks, estimating durations, and analyzing the critical path Estimating, analyzing, and managing the schedule, using the critical path method (CPM), critical chain, and PERT Optimizing the schedule and assessing the impact on resources and costs- crashing and fast-tracking Managing schedule variance using earned-value analyses, and optimizing schedule performance using corrective options and actions Estimating schedule contingencies, schedule buffers, and management reserves, and managing risk Understanding schedule-management approaches and tactics to keep projects on schedule 	2	6

			 Schedule and cost integration 		
5	Project Cost Management: (Bill of Quantities).	a.1, b.1, c.1, c.2, d.1, d.2	 Project cost estimating Project cost budgeting and control Estimating approaches and models Improving the estimation process Financial management Value management Time and cost change management Impact of cost-estimation changes on project 	1	3
6	 Clients and Contracts. Managing design development. 	a.1, b.1, c.1, c.2, d.1, d.2	 Introduction to Law and the Legal system Legal issues as they pertain to project procurement Contracts and procurement Contract Negotiation Health, safety, and legal implications Employment laws Complying with standards and regulations, both local and global Ending Contracts Breaking contracts: consequences Data protection, data privacy 	1	3
7	Managing procurement process (design/ supervision services).	a.1, b.1, c.1, c.2, d.1, d.2	 Foundational knowledge of procurement Understanding the role of supply chains in project management Project supply-chain building blocks The project-planning chain and project- delivery chain Vendors, contract types, risks, and incentives Life cycle and processes and supply- chain integration Plan, execute, and control of supply- chain projects Managing connected supply chains Dealing with direct suppliers and suppliers far removed from the immediate chain Activities necessary to formally close a project Contract closure and payments 	1	3

			Post-completion project reviews		
8	Resources Management	a.1, b.1, c.1, c.2, d.1, d.2	What is Resource Management?Why is Resource Management important?What are the Benefits of using ResourceManagement?What are Resource ManagementTechniques?Resource planning: estimating andbalancingIdentifying and acquiring the requiredhuman resources, including supplierresourcesIdentifying and scheduling resourcesEstimating durationsDocumenting team roles andresponsibilitiesIdentifying and acquiring the requiredequipment, materials, and resourcesManaging resources, including equipment,materials, and the project teamDecision-making tradeoff whenexperiencing resource and scheduleconstraintsTools and techniques for resourcemanagement, including organizationalbreakdown structures and responsibilityassignment matricesStaffing, training, and development ofresourcesGlobal teams and networks	2	6
9	Project Execution: - Project Monitoring - Quality management	a.1, b.1, c.1, c.2, d.1, d.2	 Project Control Enablers Project Plan Development Schedule Development Project Control Risk, change, and performance control Quality's Foundations Quality Planning for Customer Satisfaction Project requirements and identification of metrics to manage quality Quality assurance tools including Ishikawa diagrams, control charts, and audits Quality Control Concepts and techniques Managing changes and quality Putting it All Together: Building a Quality Management Plan 	2	6

10	 Project team management, Client management, 	a.1, b.1, c.1, c.2, d.1, d.2	 Team-building processes and challenges Launching a team, including goal setting, process definition, and kickoff meetings Principles of motivation, motivational theories, and leadership styles Identifying, categorizing, and prioritizing stakeholders Gathering information about stakeholders Project progress and performance Project tracking and monitoring. 	1	3
11	 General Revision Term project submission and Presentations. 	a.1, b.1, c.1, c.2, d.1, d.2		1	3
Numb	er of Weeks /and	Units Per Se	emester	14	42

B - Semi	nar NA			
Order	Tasks/ Experiments	Number of Weeks	Contact Hours	Learning Outcomes
1.				
2.				
3.				
Number of Weeks /and Units Per Semester				

IX. Teaching Strategies of the Course

- Lectures
- Interactive Sessions (Brainstorming Sessions, Discussions, etc.)
- Team Working Sessions
- Active Learning Approaches (Searching, case studies, presentations...)

V.	V. Schedule of Assessment Tasks for Students During the Semester							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes			
1	Assignments and Quizzes	3 - 15	30	20% - 30%	a.1, b.1, c.1,			

2	Mid-Term Exam	8	20	20% - 30%	c.2, d.1, d.2
3	Final Exam	16	50	50% - 60%	
	Total	100	100%		

VI.	Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1	 Readings: Each week readings; based on each reading/topic, a written assignment will be issued. Students will be asked to write synthetic essays and/or complete analyses pertaining to the reading materials. These will be short (>4, <5 pages double spaced) pieces. Each work assigned for reading will have 1 or 2 presenters assigned to it from the class. In general students will be asked to describe the main points of the paper and to offer a critique of the contents. Students are expected to prepare for class by reading the assigned reading prior to the class for which they are listed, and to participate in class sessions/group discussions. 		3 - 14	20

VIII Learning Resources and Facilities

1- Required Textbook(s)

• PMI (2017). A Guide to the Project Management Body of Knowledge - PMBOK: (6th ed.). Project Management Institute, Newtown Square, PA, USA

2- Essential References

- Heerkens, G.R. (2002). Project Management. The McGraw-Hill Companies, Inc., NY: USA
- Verzuh, E. (2003). The Portable MBA in Project Management, John Wiley & Sons, Inc., Hoboken, NJ: USA.
- William G. Ramroth, (2006), Project Management for Design Professionals,
- Sidney M. Levi, (2006), Project Management in Construction, Me Grow Hill Professional.
- Gang Chen, (2009), Architectural Practice Simplified: A Survival Guide and Checklists for Building Construction and A16 Site Improvements as well as Tips on Architecture, Building Design, Construction and Project Management,

3- Electronic Materials and Websites etc.

- Course Power Point.
- Video clips.
- Links to information resources:
 - https://www.invensislearning.com/blog/5-phases-project-management-lifecycle/
 - <u>https://www.projectmanagement.ie/blog/project-life-cycle/</u>

- https://www.projectmanagement.ie/blog/resource-management/

I. Course Policies

_

Unless otherwise stated, the normal course administration policies and rules of the Faculty of Engineering apply. For the policy, see: ------

Educational and research Facilities and Equipment Required

Technology Resources

(AV, data show, Smart Board, software, etc.)

Datashow, Whiteboard, Software

Other Resources

(Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)

-

	Class Attendance
1	A student should attend not less than 75 % of total hours of the course; otherwise, he will not be
1	able to take the exam and will be considered as exam failure. If the student is absent due to
	illness, he/she should bring a proof statement from university clinic.
	• Tardy
2	For being late in attending the class, the student will be initially notified. If he/she repeated
	lateness in attending class he will be considered as absent.
	Exam Attendance/Punctuality
2	A student should attend the exam on time. He is permitted to attend an exam half an hour from
5	exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam.
	Assignments and Projects
4	Assignments are given to the students after each chapter; students have to submit all
	assignments for checking on time.
	• Cheating
5	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study, the student will be dismissed from the faculty.
	times during his/her study, the student will be dismissed from the faculty.Plagiarism
	 times during his/her study, the student will be dismissed from the faculty. Plagiarism Plagiarism is the attending of a student the exam of a course instead of another student. If the
6	 times during his/her study, the student will be dismissed from the faculty. Plagiarism Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he will be dismissed from the faculty.
6	 times during his/her study, the student will be dismissed from the faculty. Plagiarism Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he will be dismissed from the faculty. The final dismissal of the student from the faculty should be confirmed by the Student Council
6	 times during his/her study, the student will be dismissed from the faculty. Plagiarism Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he will be dismissed from the faculty. The final dismissal of the student from the faculty should be confirmed by the Student Council Affairs of the university.
6	 times during his/her study, the student will be dismissed from the faculty. Plagiarism Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he will be dismissed from the faculty. The final dismissal of the student from the faculty should be confirmed by the Student Council Affairs of the university. Other policies
6	 times during his/her study, the student will be dismissed from the faculty. Plagiarism Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he will be dismissed from the faculty. The final dismissal of the student from the faculty should be confirmed by the Student Council Affairs of the university. Other policies Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the
6	 times during his/her study, the student will be dismissed from the faculty. Plagiarism Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he will be dismissed from the faculty. The final dismissal of the student from the faculty should be confirmed by the Student Council Affairs of the university. Other policies Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room.
6	 times during his/her study, the student will be dismissed from the faculty. Plagiarism Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he will be dismissed from the faculty. The final dismissal of the student from the faculty should be confirmed by the Student Council Affairs of the university. Other policies Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room. Mobile phones are not allowed in class during the examination.
6	 times during his/her study, the student will be dismissed from the faculty. Plagiarism Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he will be dismissed from the faculty. The final dismissal of the student from the faculty should be confirmed by the Student Council Affairs of the university. Other policies Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room. Mobile phones are not allowed in class during the examination. Lecture notes and assignments may be given directly to students using soft and/or hard
6	 times during his/her study, the student will be dismissed from the faculty. Plagiarism Plagiarism Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he will be dismissed from the faculty. The final dismissal of the student from the faculty should be confirmed by the Student Council Affairs of the university. Other policies Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room. Mobile phones are not allowed in class during the examination. Lecture notes and assignments may be given directly to students using soft and/or hard copy.

Course Plan (Syllabus) Advance Project Management

II Information about Faculty Member Responsible for the Course								
Name of Faculty Member	Prof. Dr. Eng. Wael A. Alaghbari	Office Hours						
Location & Telephone No.	Faculty of Engineering Mobile: 777869168	SAT	SUN	MON	TUE	WED	THU	
E-mail	wael.aghbari@gmail.com							

III. Course Identification and General Information							
1-	Course Title:	Advance Project Management					
2-	Course Number & Code:	FR502					
			(C.H		Total	
3-	Credit hours:	Th.	Seminar	Pr.	F. Tr.	Total	
		3	-	-	-	3	
4-	Study level/year at which this course is offered:	M.Sc. in All Engineering program					
5-	Pre –requisite:	-					
6-	Co –requisite (if any):	None					
7-	Program (s) in which the course is offered	M.Sc. i	n Architecti	ural Engine	ering		
8-	Language of teaching the course:	English	l				
9-	System of Study:	Regular					
10-	Mode of delivery:	Face-to-Face					
11-	Location of teaching the course:	Faculty	of Enginee	ring			

IV. Course Description

This course introduces the student to basic methodologies and analytical methods for project design and implementation in various industries, in addition to providing the student with a clear understanding of how to organize and manage the necessary resources within the specified scope of work, time, cost, quality requirements, and within acceptable levels of risk. This course introduces the principles of project management and their applications in various project processes. The knowledge that the student acquires from studying this course also enables the student to easily apply various management theories in their own projects to achieve results within the specified objectives.

Inter	Intended Learning Outcomes (ILOs) of the Course					
al	•	Demonstrate holistic understanding of the principal components and concepts of project management and applications of good management practices to enhance innovation and maintain competitiveness				
b1	•	Evaluate project processes, and using necessary tools and effectively address the challenges that will be faced during the project, in order to make better decisions, develop and implement plans and strategies.				
c1	•	Apply knowledge, skills and management techniques to solve problems, implement contemporary projects and operations effectively and efficiently.				
c2	•	Use core engineering management concepts flexibly in a variety of contexts to meet the important technical and management needs of private and public organizations.				
d1	•	Demonstrate awareness of professional and ethical responsibility during execute and manage the project processes				
d2	•	Gain new skills of self-development, developing effective communication and leadership skills				

V. Course Contents							
A – Theoretical Aspects							
Order	Topics List	Week Due	Contact Hours				
1.	Introduction:	W1	3				
	What is a project and project management?						
	What is a role of Project manager, duties and responsibilities?						
	Purpose of Project Management						
2.	Project phases and project life cycle.	W2	3				
3.	Project Planning	W3	3				
4	Project Time management:	W4-W5	6				
5	Project Cost Management: (Bill of Quantities).	W6	3				
6	Clients and Contracts. Managing design development.	W7	3				
7	Mid-term exam.	W8	3				
8	Managing procurement process (design/ supervision services).	W9	3				
9	Resources Management	W10-W11	6				
10	Project Execution:	W12-W13	6				
	- Project Monitoring						
	- Quality management						
11	- Project team management,	W14	3				
	- Client management,						
12	- General Revision	W15	3				
	- Term project submission and Presentations.						
13	Final Exam	W16	3				
Numbe	er of Weeks and Units Per Semester	16	48				

B – Semi	nar NA			
Order	Tasks/ Experiments	Number of Weeks	Contact Hours	Learning Outcomes

1.			
2.			
3.			
Number of Weeks /and Units Per Semester			

VI. Teaching Strategies of the Course

- Lectures
- Interactive Sessions (Brainstorming Sessions, Discussions, etc.)
- Team Working Sessions
- Active Learning Approaches (Searching, case studies, presentations ...)

VII. Schedule of Assessment Tasks for Students During the Semester					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1.	Assignments and Quizzes	3 - 15	30	20% - 30%	a.1, b.1, c.1,
2.	Mid -Term Exam	8	20	20% - 30%	c.2, d.1, d.2
3.	Final Exam	16	50	50% - 60%	
Total			100	100%	

VIII. Learning Resources

1- Required Textbooks

• PMI (2017). A Guide to the Project Management Body of Knowledge - PMBOK: (6th ed.). Project Management Institute, Newtown Square, PA, USA

2- Essential References

- Heerkens, G.R. (2002). Project Management. The McGraw-Hill Companies, Inc., NY: USA
- Verzuh, E. (2003). The Portable MBA in Project Management, John Wiley & Sons, Inc., Hoboken, NJ: USA.
- William G. Ramroth, (2006), Project Management for Design Professionals,
- Sidney M. Levi, (2006), Project Management in Construction, Me Grow Hill Professional.
- Gang Chen, (2009), Architectural Practice Simplified: A Survival Guide and Checklists for Building Construction and A16 Site Improvements as well as Tips on Architecture, Building Design, Construction and Project Management,
- 3- Electronic Materials and Web Sites etc.

• Websites:

- https://www.invensislearning.com/blog/5-phases-project-management-lifecycle/
- https://www.projectmanagement.ie/blog/project-life-cycle/
- https://www.projectmanagement.ie/blog/resource-management/
- Course Power Point.
- Video clips.

• Links to information resources.

IX. Course Policies		
Un Eng	ess otherwise stated, the normal course administration policies and rules of the Faculty of gineering apply. For the policy, see:	
1	• Class Attendance A student should attend not less than 75 % of total hours of the course; otherwise, he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic.	
2	• Tardy For being late in attending the class, the student will be initially notified. If he/she repeated lateness in attending class he will be considered as absent.	
3	• Exam Attendance/Punctuality A student should attend the exam on time. He is permitted to attend an exam half an hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam.	
4	• Assignments and Projects Assignments are given to the students after each chapter; students have to submit all assignments for checking on time.	
5	• Cheating For cheating in exam, a student will be considered as fail. In case the cheating is repeated three times during his/her study, the student will be dismissed from the faculty.	
6	• Plagiarism Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he will be dismissed from the faculty. The final dismissal of the student from the faculty should be confirmed by the Student Council Affairs of the university.	
7	 Other policies Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room. Mobile phones are not allowed in class during the examination. Lecture notes and assignments may be given directly to students using soft and/or hard copy. 	