Course Specification of: Modern Manufacturing Systems Course Code (MTE551)

•	General Information About the	e Course	2:			
25 .	Course Title:	Mod	ern Man	ufacturing Sys	tems	
26 .	Course Code and Number:	3				
		Credit Hours Total				
27.	Credit Hours:	Lecture	Practical	Seminar/Tutorial	Totai	
		3			3	
28.	Study Level and Semester:	1 st Semester				
29.	Pre-requisites (if any):			None		
30 .	Co-requisites (if any):			None		
31 .	Program (s) in which the course is offered:	MSc. In Mechatronics Engineering Program				
32 .	Language of teaching the course:	English				
3 3.	Study System:	Courses & Thesis				
34 .	Prepared By:	Dr Abdullah Dhaiban				
35 .	Reviewed by:	Dr				
36 .	Date of Approval:					

• Course Description:

Manufacturing systems engineering is concerned with the design and on-going operation and enhancement of the integrated elements within a manufacturing system, which is a very complex activity, even for simple products. The aim of this course is to develop students' understanding of that complexity within a modern manufacturing environment. This course covers elements that make up a manufacturing system, including production engineering, plant and maintenance engineering, product design, logistics, production planning and control, forecast quality assurance, accounting and purchasing, all of which work together within the manufacturing system to create products that meet customers' requirements.

• Course Intended Learning Outcomes (CILOs):

Upon successful completion of **Modern Manufacturing Systems Course**, the graduates will be able to:

- a1 Identify the principles of manufacturing systems engineering.
- a2 Identify the common production planning approaches and state their impact on manufacturing systems
- **b1** Apply a range of analysis techniques to determine the effectiveness and efficiency of a manufacturing system.
- **b2-** Analyze the impact of different production planning approaches on the

- effectiveness of a manufacturing system.
- c1- Develop an appropriate future state for a manufacturing system.
- **c2-** Evaluate the effectiveness of production planning methods.
- d1- Conduct independently research that advances and extends knowledge in Manufacturing Systems fields.
- d2- Engage in independent lifelong learning.

Program Intended Learning Outcomes (PILOs) CILOs i. Knowledge and Understanding: Upon successful completion of the Modern Manufacturing Systems Course, the graduates will be able to: a1. Identify the principles of manufacturing systems engineering. A2. Recognize and explain the contemporary engineering technologies and issues in the field of Mechatronics engineering.
i. Knowledge and Understanding: Upon successful completion of the Modern Manufacturing Systems Course, the graduates will be able to: a1. Identify the principles of manufacturing systems engineering. A2. Recognize and explain the contemporary engineering technologies and issues in the field of Mechatronics engineering.
successful completion of the Modern Manufacturing Systems Course, the graduates will be able to: a1. Identify the principles of manufacturing systems engineering. Mechatronics Engineering Program, the graduates will be able to: a2. Recognize and explain the contemporary engineering technologies and issues in the field of Mechatronics engineering.
Manufacturing Systems Course, the graduates will be able to: a1. Identify the principles of manufacturing systems engineering. Mechatronics Engineering Program, the graduates will be able to: A2. Recognize and explain the contemporary engineering technologies and issues in the field of Mechatronics engineering.
will be able to: a1. Identify the principles of manufacturing systems engineering.
a1. Identify the principles of A2. Recognize and explain the manufacturing systems engineering. contemporary engineering technologies and issues in the field of Mechatronics engineering.
manufacturing systems engineering. contemporary engineering technologies and issues in the field of Mechatronics engineering.
and issues in the field of Mechatronics engineering.
engineering.
a2. Identify the common production as Explain in-depth the principles of
recently the common production as. Explain in depth the principles of
planning approaches and state their sustainable design and development of
impact on manufacturing systems Mechatronics engineering.
j. Cognitive/ Intellectual Skills: Upon J. Cognitive/ Intellectual Skills: Upon
successful completion of the Modern successful completion of the MSc. In Manufacturing Systems Course, the Mechatronics Engineering Program, the
Manufacturing Systems Course, the graduates will be able to: Mechatronics Engineering Program, the graduates will be able to:
b1. Apply a range of analysis techniques B1. Apply appropriate principles
to determine the effectiveness and methodologies, techniques, tools and
development and evaluation of
system. mechatronics engineering systems.
b2. Analyze the impact of different B2. Identify, formulate and analyze
production planning approaches on research and solve complex
production planning approaches on
the criectiveness of a manufacturing
system.
k. Professional and Practical Skills: Upon successful completion of the Modern successful completion of the MSc. In

	Manufacturing Systems Course, the	Mechatronics Engineering Program, the			
-	graduates will be able to:	graduates will be able to:			
c1.	Develop an appropriate future state	C1. Conduct research to solve			
	for a manufacturing system.	mechatronics engineering problems.			
c2.	Evaluate the effectiveness of	c2. Use advanced methodologies and			
	production planning methods.	skills to solve Mechatronics			
	production productions	engineering problems.			
l.	Transferable Skills: Upon successful	L. Transferable Skills: Upon successful			
	completion of the Modern Manufacturing	completion of the MSc. In Mechatronics			
	Systems Course, the graduates will be able	Engineering Program, the graduates will			
	to:	be able to:			
d1.	Conduct independently research that	D1. Prepare a complete thesis and term-			
	advances and extends knowledge in	courses works/ tasks, write their			
	Manufacturing Systems fields.	documents and defend on them.			
d2.	•	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
uz.	Engage in independent lifelong				
1					
	learning.	direction and independence leading			
	learning.	to the ability to continue to develop			
	learning.	to the ability to continue to develop their knowledge understanding and			
	learning.	to the ability to continue to develop			

• A	Alignment of CILOs to Teaching and Assessment Strategies							
i.	Alignment of Knowledge and Understan	ding CILOs:						
	Knowledge and Understanding CILOs	Teaching Strategies	Assessment Strategies					
a1.	Identify the principles of manufacturing systems engineering.	 Lectures, Seminars, Self-Learning Problems/Studies, Case study, Group/Individual Projects and Studies, Active learning, 	 Oral & Writing Exams Reports, Survey, Written Exam, Assignments 					
a2.	Identify the common production planning approaches and state their impact on manufacturing systems	 Lectures, Seminars, Self-Learning Problems/Studies, Case study, Group/Individual Projects and Studies, 	 Oral & Writing Exams Reports, Survey, Written Exam, Assignments 					

		 Active learning, 	
j.	Alignment of Intellectual Skills CILO	S:	
	Intellectual Skills CILOs	Teaching Strategies	Assessment Strategies
b1.	Apply a range of analysis techniques to determine the effectiveness and efficiency of a manufacturing system.	 Lectures, Project Supervision, Self-Learning, Case Study, Independent Study, Analysis and Problen Solving, Brainstorming, Presentations, 	 Oral & Writing Exams Reports, Survey, Written Exam, Assignments
b2.	Analyze the impact of different production planning approaches on the effectiveness of a manufacturing system.	 Project Supervision, Self-Learning, Case Study, Independent Study, Analysis and Problen Solving, Brainstorming, Presentations, 	 Oral & Writing Exams Reports, Survey, Written Exam, Assignments
	Alignment of Professional and Practic	al Skills CILOs:	
1	Professional and Practical Skills CILOs	Teaching Strategies	Assessment Strategies
c1.	Develop an appropriate future state for a manufacturing system.	 Lectures, Project Supervision, Laboratory Works, Self-Learning, Case Study, Simulation Exercises, Independent Study, Analysis and Problem Solving, Presentations, 	 Seminar Report, Written Research Proposal, Thesis and Publication.
c2.	Evaluate the effectiveness of production planning methods.	 Lectures, Project Supervision, Laboratory Works, Self-Learning, Case Study, Simulation Exercises, Independent Study, Analysis and Problem 	 Seminar Report, Written Research Proposal, Thesis and Publication.
		Solving, • Presentations,	
l.	Alignment of Transferable (General)	Presentations,	

d1.	Conduct independently research that advances and extends knowledge in Manufacturing Systems fields.	 Dissertation Defenses and Presentation, Independent Study, Presentation, Brainstorming, Presenting Researches, Publish Research Papers. 	 Written Research Proposal, Thesis and Publication, Written Exam, Assignments, Field Work, Survey, Presentation, Written Report.
d2.	Engage in independent lifelong learning.	 Dissertation Defenses and Presentation, Independent Study, Presentation, Brainstorming, Presenting Researches, Publish Research Papers. 	 Written Research Proposal, Thesis and Publication, Written Exam, Assignments, Experimental and Field Work, Laboratory Report, Survey, Presentation, Written Report.

• Co	Course Content						
7.	Theoretical Aspect		N. I. C		G		
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs		
1	Fundamentals of Manufacturing	 Fundamentals of Manufacturing Definitions of production and manufacturing Principles of manufacturing Production inputs, outputs, and processes. Production organization 	1	3	a1, a2		
2	Fundamentals of Manufacturing Systems	 Manufacturing systems Structural of manufacturing systems Transformational aspect of manufacturing systems Procedural aspect of manufacturing systems Integrated manufacturing systems (IMS) 	1	3	a1, a2		
3	Modes of Production	 Types of production Mass production Multi-product, small-batch production 	1	3	a1, a2		
4	Integrated Manufacturing and Management Systems	 Basic functions and structures of management systems Basic framework of integrated manufacturing management systems Framework of an integrated manufacturing system Logistic systems Material flow Technological information flow 	1	3	a1, a2,b1		
5	Product Planning and Design	 Product Planning Product design Product structure and explosion 	1	3	a1, a2, b1,b2		

6	Process Planning and Design	 Scope and problems of process planning Process design Operation design Optimum routing analysis Line balancing 	1	3	a1, a2, b1,b2
7	Layout and logistic "Planning and Design"	 Scope and problems of layout planning Systematic layout planning (SLP) Mathematical layout design Production flow analysis Logistic Planning and Design Transportation problems Distribution problems 	1	3	a1, a2, b1,b2, c1,c2
8	Midterm Exam	All previous topics	1	3	a1, a2, b1,b2, c1,c2
9	Manufacturing Optimization	 Evaluation criteria for manufacturing optimization Optimization of single-stage manufacturing Optimization of multistage manufacturing systems 	1	3	a1, a2, b1,b2, c1,c2
10	Aggregate Production Planning	 Production planning Short-term production planning Multiple-objective production planning Product mix analysis Lot-size analysis Material requirements planning (MRP) and machine loading Long-term production planning Production forecasting 	1	3	a1, a2, b1,b2, c1,c2, d1, d2
11	Production Scheduling	 Scope of production scheduling Operations scheduling Project scheduling— PERT and CPM 	1	3	a1, a2, b1,b2, c1,c2, d1, d2

12	Inventory Management	 Inventory function in manufacturing Fundamentals of inventory analysis Inventory systems Multiple-product inventory management Probabilistic inventory models 	1	3	a1, a2, b1,b2, c1,c2, d1, d2
13	Production Control	 Scope and problems of production control Process control Just-in-time (JIT) production Productive maintenance 	1	3	a1, a2, b1,b2, c1,c2, d1, d2
14	Manufacturing Cost and Product Cost Structure	 Value/cost flow in manufacturing systems Concepts of cost and time-series value of money Classification of costs Product cost structure Selling price Computing the manufacturing cost 	1	3	a1, a2, b1,b2, c1,c2, d1, d2
15	Profit Planning, Break-even Analysis and capital investment	 Profit planning Break-even analysis Investment for manufacturing automation Evaluation methods of capital investment 	1	3	a1, a2, b1,b2, c1,c2, d1, d2
16	Final Exam		1	3	a1, a2, b1,b2, c1,c2, d1, d2
	Number of Weeks	and Contact Hours Per Semester	16	48	

8.	8. Practical Aspect					
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs		
1	■ None					

	9.	Tutorial Aspect:			
N	No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)
	1	None			

• Teaching Strategies:

- Lectures
- Seminars
- Self-Learning Problems/Studies
- Case study
- Group/Individual Projects and Studies
- Active learning
- Project Supervision
- Self-Learning
- Independent Study
- Analysis and Problem Solving
- Brainstorming
- Presentations
- Laboratory Works
- Simulation Exercises
- Presentations
- Dissertation Defenses and Presentation
- Presentation
- Presenting Researches
- Publish Research Papers.

• Assessment Methods of the Course:

- Oral & Writing Exams
- Reports,
- Survey,
- Written Exam,
- Assignments Seminar Report,
- Written Research Proposal,
- Thesis and Publication,
- Assignments,
- Field Work,
- Presentation,

•	Tasks and Assignments:				
No	Assignments/ Tasks	Individual/ Group	Mark	Week Due	CILOs (symbols)
1	Homework	Individual	10	Weekly	a1, a2, b1, b2, c1, c2
2	Project	Individual	20	9 th week	a1, a2, b1, b2, c1, c2,

			c3
Total Score	30	==	===

•	• Learning Assessment:				
No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment	CILOs
1	Tasks and Assignments	9 th week	30	30%	a1, a2, b1, b2, c1, c2, c3
	Midterm Exam	8 th week	20	20%	a1, a2, b1,b2, c1,c2
3	Final Exam (Theoretical)	16 th week	50	50%	All CILOs
	Total			100%	===

• Learning Resources:

7. Required Textbook(s):

- **3.** Richard E. Gustavson: **(2010)** "Production Systems Engineering Cost and Performance Optimization, McGraw-Hill Companies- ISBN: 978-0-07-170189-1
- **4.** Katsundo Hitomi: (1996) "Manufacturing Systems Engineering, 2nd Edition, Taylor & Francis, ISBN978-0-7484-0324-0.

8. Essential References:

- 5. George Chryssolouris (2006) "Manufacturing Systems Theory and Practice (2nd Ed.)" Springer ISBN 978-0-387-25683-2.
- **6.** Katsundo Hitomi: (2008)"Introduction to Manufacturing Systems Engineering (5th Ed.)" (Kyoritsu Publishing, ISBN978-4-320-08172-7, in Japanese.

9. Electronic Materials and Web Sites etc.

- 1- Arena Simulation Software (assembly line balancing, flow analysis,...).
- 2- CRAFT Plant-Layout Software.
- 3- Production Planning and Control Software.

الضوابط والسياسات المتبعة في المقرر Course Policies	.iii
بعد الرجوع للوانح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتى:	2
سياسة حضور الفعاليات التعليمية Class Attendance:	1
ل يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. له يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم	
اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
ـ يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
- لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان - إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
التعيينات والمشاريع Assignments & Projects:	4
- يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها. - إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.	
الغش Cheating:	5
- في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب. - في حال ثبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.	
الانتحال Plagiarism:	6
 في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك 	
سياسات أخرى Other policies:	7
- أي سياسات أخرى مثل استخدام المويايل أو مواعيد تسليم التكليفات الخ	

Academic Year: 2021-2022

Course Plan (Syllabus): Modern Manufacturing Systems

• Information about Faculty Member Responsible for the Course:							
Name	Dr Abdullah Dhaiban	0	ffice Ho	ours			
Location &Telephone No.	Mechatronics Dep.	SAT	SUN	MON	TUE	WED	THU
E-mail	A.dhaiban@su.edu.ye Adaiban2@gmail.com						

	• General information about the course:					
19	Course Title	Modern Manufacturing Systems				
20	Course Code and Number	(MTE551)				
		Credit Hours Total				
21	Credit Hours	Lecture Practical Seminar/Tutorial				
22	Study Level and Semester		1 st	Semester		
23	Pre-requisites			None		
24	Co –requisite			None		
25	Program (s) in which the course is offered	MSc. In Mechatronics Engineering Program				
26	Language of teaching the course	English				
27	Location of teaching the course		Faulty o	of Engineering		

• Course Description:

Manufacturing systems engineering is concerned with the design and on-going operation and enhancement of the integrated elements within a manufacturing system, which is a very complex activity, even for simple products. The aim of this course is to develop students' understanding of that complexity within a modern manufacturing environment. This course covers elements that make up a manufacturing system, including production engineering, plant and maintenance engineering, product design, logistics, production planning and control, forecast quality assurance, accounting and purchasing, all of which work together within the manufacturing system to create products that meet customers' requirements.

• Course Intended Learning Outcomes (CILOs):

Upon successful completion of **Modern Manufacturing Systems Course**, the graduates will be able to:

- al Identify the principles of manufacturing systems engineering.
- **a2** Identify the common production planning approaches and state their impact on manufacturing systems
- **b1** Apply a range of analysis techniques to determine the effectiveness and efficiency of a manufacturing system.
- **b2-** Analyze the impact of different production planning approaches on the effectiveness of a manufacturing system.
- c1- Develop an appropriate future state for a manufacturing system.
- c2- Evaluate the effectiveness of production planning methods.
- d1- Conduct independently research that advances and extends knowledge in Manufacturing Systems fields.
- d2- Engage in independent lifelong learning.

Course ©	Content:
----------------------------	----------

4. Theoretical Aspect:

	4. Theoretical Aspect.					
Order	Units	Sub Topics	Week Due	Contact Hours		
1	Fundamentals of Manufacturing	 Fundamentals of Manufacturing Definitions of production and manufacturing Principles of manufacturing Production inputs, outputs, and processes. Production organization 	1	3		
2	Fundamentals of Manufacturing Systems	 Manufacturing systems Structural of manufacturing systems Transformational aspect of manufacturing systems Procedural aspect of manufacturing systems Integrated manufacturing systems (IMS) 	1	3		

3	Modes of Production	 Types of production Mass production Multi-product, small-batch production 	1	3
4	Integrated Manufacturing and Management Systems	 Basic functions and structures of management systems Basic framework of integrated manufacturing management systems Framework of an integrated manufacturing system Logistic systems Material flow Technological information flow 	1	3
5	Product Planning and Design	 Product Planning Product design Product structure and explosion 	1	3
6	Process Planning and Design	 Scope and problems of process planning Process design Operation design Optimum routing analysis Line balancing 	1	3
7	Layout and logistic "Planning and Design"	 Scope and problems of layout planning Systematic layout planning (SLP) Mathematical layout design Production flow analysis Logistic Planning and Design Transportation problems Distribution problems 	1	3
8	Midterm Exam	■ All previous topics	1	3

9	Manufacturing Optimization	 Evaluation criteria for manufacturing optimization Optimization of single-stage manufacturing Optimization of multistage manufacturing systems 		3
10	Aggregate Production Planning	 Production planning Short-term production planning Multiple-objective production planning Product mix analysis Lot-size analysis Material requirements planning (MRP) and machine loading Long-term production planning Production forecasting 		3
11	Production Scheduling	 Scope of production scheduling Operations scheduling Project scheduling— PERT and CPM 	1	3
12	Inventory Management	 Inventory function in manufacturing Fundamentals of inventory analysis 		3
13	Production Control	 Scope and problems of production control Process control Just-in-time (JIT) production Productive maintenance 	1	3
14	Manufacturing Cost and Product Cost Structure	 Value/cost flow in manufacturing systems Concepts of cost and time-series value of money Classification of costs Product cost structure Selling price Computing the manufacturing cost 	1	3

15	Profit Planning, Break- even Analysis and capital investment	 Profit planning Break-even analysis Investment for manufacturing automation Evaluation methods of capital investment 	1	3
16	Final Exam	All previous topics	1	3
	Number of Weeks /a	and Contact Hours Per Semester	16	48

	5. Practical Aspect				
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs	
1	■ None				
	Number of Weeks /and Contact Hours Per Semester				

6	6. Training/ Tutorials/ Exercises Aspects:				
Order	Order Tutorials/ Exercises Week Due Contact Hours				
1	1 None				
Numb	Number of Weeks /and Contact Hours Per Semester				

• Teaching Strategies:

- Lectures
- Seminars
- Self-Learning Problems/Studies
- Case study
- Group/Individual Projects and Studies
- Active learning
- Project Supervision
- Self-Learning
- Independent Study
- Analysis and Problem Solving
- Brainstorming
- Presentations

- Laboratory Works
- Simulation Exercises
- Presentations
- Dissertation Defenses and Presentation
- Presentation
- Presenting Researches
- Publish Research Papers.

• Assessment Methods of the Course:

- Oral & Writing Exams
- Reports,
- Survey,
- Written Exam,
- Assignments Seminar Report,
- Written Research Proposal,
- Thesis and Publication,
- Assignments,
- Field Work,
- Presentation,

	• Tasks and Assignments:			
No	Assignments	Individual /Groups	Mark	Week Due
1	Homework	Individual	10	Weekly
2	Project	Individual	20	9 th week
	Total Score		30	

	• Learning Assessment:					
No	Assessment Method	Week Due	Mark	Proportion of Final Assessment %		
1	Tasks and Assignments	9 th week	30	30%		
3	Midterm Exam	8 th week	20	20%		
3	Final Exam (Theoretical)	16 th week	50	50%		
Totalالمجموع				100 %		

• Learning Resources:

4. Required Textbook(s):

3. Richard E. Gustavson: (2010) "Production Systems Engineering Cost and Performance

- Optimization, McGraw-Hill Companies- ISBN: 978-0-07-170189-1
- **4.** Katsundo Hitomi: (1996) "Manufacturing Systems Engineering, 2nd Edition, Taylor & Francis, ISBN 978-0-7484-0324-0.

5. Essential References:

- 5. George Chryssolouris (2006) "Manufacturing Systems Theory and Practice (2nd Ed.)" Springer ISBN 978-0-387-25683-2.
- **6.** Katsundo Hitomi: (2008)"Introduction to Manufacturing Systems Engineering (5th Ed.)" (Kyoritsu Publishing, ISBN978-4-320-08172-7, in Japanese.

6. Electronic Materials and Web Sites etc.

- 1- Arena Simulation Software (assembly line balancing, flow analysis,...).
- 2- CRAFT Plant-Layout Software.
 - Production Planning and Control Software.

- يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. - يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم	1
سياسة حضور الفعاليات التعليمية Class Attendance: - يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم	1
- يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. - يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم	1
- يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% ويتم	
اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
ـ يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث مرات	
يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
- لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان	
 إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية. 	
التعيينات والمشاريع Assignments & Projects:	4
- يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها	
- إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.	
	5
- في حال تبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب.	
- في حال تُبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.	
	6
, "	7
- أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ	