2- Course Specification of Structural Dynamics (CE 584)

	I. Course Identification and General Information:						
1.	Course Title:	Structural Dynamics					
2.	Course Code & Number:	CE 584					
			C.H		Credit		
3.	Credit hours:	Lecture.	Laboratory	Seminars.	Hours		
		3	-	-	3		
4.	Study semester at which this course is offered:	1st semester					
5.	Pre –requisite (if any):	Math, Structural Analysis, Engineering Mechanics.					
6.	Co –requisite (if any):	Non					
7.	Program (s) in which the course is offered:	Master of Science in structural engineering program					
8.	Language of teaching the course:	English+ Arab	pic				
9.	Course type	Required					
10.	Location of teaching the course:	Class room					
11.	Prepared By:	Dr. Mohammad Abdulla Algorafi Dr. Mohammed Abdu					
12.	Date of Approval						

II. Course Description:

This course deal with Behavior of structures under dynamic loading. It will cover the theory of structural response to dynamic loads. Students will learn the Fundamentals of structural dynamic analysis for Lumped mass systems; free and forced vibration of single and multiple degrees of freedom systems; normal modal analysis; transient dynamic analysis by numerical integration; response spectrum of earthquake

III.	Course Intended learning outcomes (CILOs) of the course	Reference PILOs
a.1	Identify the concepts and characteristics of the formulation of the equilibrium equations in structural dynamics.	A1
a.2	Recognize physical phenomenon of the dynamic properties and behavior of civil structures, such as natural frequencies, mode shapes, damping and vibration characteristics of structures under several types of dynamic actions such as free dynamic, harmonic load, and seismic actions	A1,A2
b.1	Differentiate the effects of various types of dynamic loads, and the defiance	В3

	between the dynamic and the static load.	
b.2	Interpret the particularities of the dynamic response of civil engineering structures SDOF/MDOF in face of the characteristics and the type of actions applied such as effect of the initial conditions; response under free dynamic, harmonic load, impulsive load, any dynamic load and seismic actions.	B2
c.1	Analyze dynamics response of SDOF/MDOF system using fundamental theory, in face of the characteristics and of the type of actions applied such as effect of the initial conditions; response under free dynamic, harmonic load, impulsive load, any dynamic load and seismic actions.	C3
c.2	Formulate the equation of motion for dynamics analysis of structures of SDOF/MDOF system.	C2
d .1	Conduct independently research related to structural dynamic	D3
d.2	Present the ideas Cleary using oral and writing.	D3

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
a1. Identify the concepts and characteristics of the formulation of the equilibrium equations in structural dynamics.		Written exam Assignment Student presentation
a2. Recognize physical phenomenon of the dynamic properties and behavior of civil structures, such as natural frequencies, mode shapes, damping and vibration characteristics of structures under several types of dynamic actions such as free dynamic, harmonic load, and seismic actions	Lecture self-study presentation	

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
 b1. Differentiate the effects of various types of dynamic loads, and the defiance between the dynamic and the static load. b2. Interpret the particularities of the dynamic response of civil engineering structures SDOF/MDOF in face of the characteristics and the type of actions applied such as effect of the initial conditions; response under free dynamic, harmonic load, impulsive load, any dynamic load and seismic actions. 	Lecture self-study presentation Analysis and Problem Solving.	Written exam Written assignment Presentations/ Presenting researches

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
c1. Analyze dynamics response of	Lecture	Written exam
SDOF/MDOF system using fundamental	self-study	Written assignment
theory, in face of the characteristics and of the	presentation	Presentations/
type of actions applied such as effect of the	Analysis and Problem	Presenting researches
initial conditions; response under free	Solving.	
dynamic, harmonic load, impulsive load, any		
dynamic load and seismic actions.		
c2. Formulate the equation of motion for		
dynamics analysis of structures of		
SDOF/MDOF system.		

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
d1.Conduct independently research	presentation, independent	present the paper,
related to structural dynamic	study, Presenting reports, •	presentation, written

d2. Present the ideas Cleary using oral	Presenting researches	report.
and writing.		

IV. Course Content:								
	A – Lecture Aspect:							
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	contact hours			
1	An Overview of Structural Dynamics	al, bl	An Overview of Structural Dynamics	1	3			
2	Introduction of SDOF	a1,,c2	Equations of Motion, Problem Statement, and Solution Methods SDOF	1	3			
3	Free Vibration- SDOF	a2,b1,c1	a. Definition of naturalfrequency/periodb. Simple harmonic motionc. Effect of damping	2	6			
4	Response to Harmonic and Periodic Excitations- SDOF	a2,b1,b2,c1,d2	 a. Dynamic Response Factors b. Resonance c. Transmissibility 	3	9			
5	Response to Arbitrary Excitations and Numerical Evaluation of Dynamic Response	a2,b1,b2,c1,d1	a.Unit impulse b. Central Difference Method	1	3			
6	Earthquake Response of Linear Systems	a2,b1,b2,c1,d1,d2	a. Response Spectrum	1	3			
7	Introduction of MDOF	a1,,c2	Equations of Motion, Problem Statement, and Solution Methods MDOF	1	3			
8	Free Vibration MDOF	a2,b1,b2,c1,d2	a. Generalized Eigenvalue Problem, Frequencies and Mode Shapes b. Modal Superposition	2	6			
9	Damping in Structures MDOF	a2,b1,b2,c1,d2		2	6			
Numbe	er of Weeks /and Unit	s Per Semester		14	42			

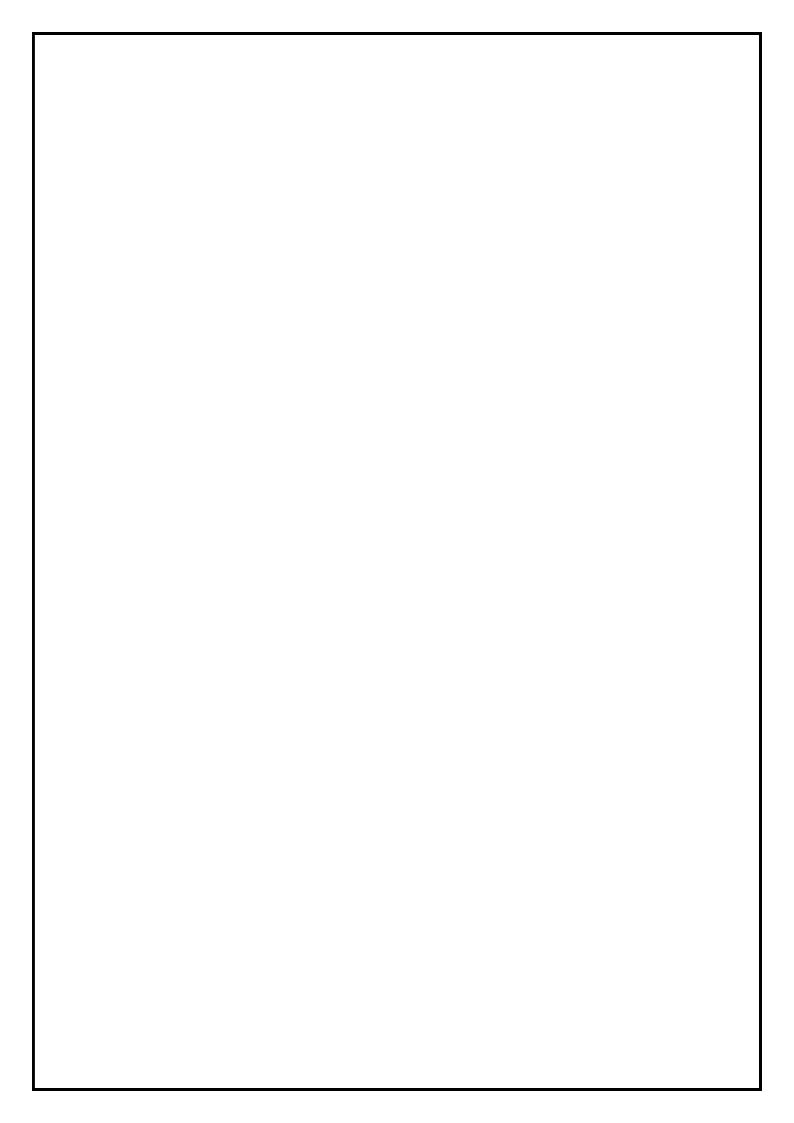
B - Laboratory Aspect:

Order	Tasks/ Experiments	Number of Weeks	contact hours	Learning Outcomes
1				
2				
3				
4				
5				
6				
7				
	Number of Weeks /and Units Per Semester			

	V. Schedule of Assessment Tasks for Students During the Semester:						
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes		
1	assignment	2,4, 7, 8, 10, 11, 13, 14	15	10	a1,a2,b1,b2,c1,c2		
2	Research activity	During class	7.5	5	b1,b2, d1,d2		
3	Quizzes	Three times randomly	7.5	5	b1,b2,c1,c2		
5	Midterm Exam	9	30	20	a1,a2,b1,b2,c1,c2		
6	Final-exam	16	90	60	a1,a2,b1,b2,c1,c2		
7							
	Total		150%	100%			

VI. Assignments:						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1	Equations of Motion of SDOF	a1,,c2	2	1		
2	Free Vibration-SDOF	a2,b1,c1	4	2		
3	Response to Harmonic Excitations- SDOF	a2,b1,b2,c1,d2	7	2		
4	Numerical Evaluation of Dynamic Response	a2,b1,b2,c1,d1	8	2		
5	Earthquake Response of Linear Systems	a2,b1,b2,c1,d1,d2	10	2		
6	Introduction of MDOF	a1,,c2	11	2		
7	Free Vibration MDOF	a2,b1,c1	13	2		
8	Damping in Structures MDOF	a2,b1,b2,c1,d2	14	2		
	Number of Weeks /and Units Per Semester					

VII. Report:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark	
1			4	1	
2			6	1	
3			8	1	
4			10	1.5	
5			11	1.5	
6			14	1.5	


VIII.	Learning Resources and Facilities:				
	Vritten in the following order: (Author - Year of publication – Title – Edition – Place of cation – Publisher).				
1- Requi	red Textbook(s) (maximum two).				
	 A.K. Chopra, Dynamics of Structures – Theory and Applications to Earthquake Engineering,4th ed., Prentice Hall, Upper Saddle River, NJ; 2012. J.W. Clough and J. Penzien, Dynamics of Structures, McGraw-Hill, New York, NY;1993. 				
2- Esse	2- Essential References.				
3.	 G.V. Berg, Elements of Structural Dynamics, Prentice-Hall, Englewood Cliffs, NJ; 1989. N.M. Newmark, E. Rosenblueth, Fundamentals of Earthquake Engineering, Prentice-Hall, Englewood, NJ; 1971. J.J. Connor, Introduction to Structural Motion Control, Prentice Hall, Upper Saddle River, NJ; 2003. Leonard Meirovitch, "Fundamentals of Vibrations ", McGraw Hill, ISBN 0070413452 				
3- Elect	tronic Materials and Web Sites <i>etc</i> .				
	- tional and research Facilities and Equipment Required				
	logy Resources ta show, Smart Board, software, etc.)				
	Resources /, e.g. if specific laboratory equipment is required, list requirements or attach a list)				

-

IX. Course Policies:			
15.	Class Attendance:The students should have more than 75 % of attendance according to rules and regulations of the faculty.		
16.	Tardy:The students should respect the timing of attending the lectures. They should attend within10 minutes from starting of the lecture.		
17.	Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented		

	according to rules and regulations of the faculty for midterm exam and final exam.	
18.	Assignments & Projects: The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.	
19.	Cheating: If any cheating occurred during the examination, the student is not allowed to continue and he/she has to face the examination committee for enquires.	
20.	Plagiarism: The student will be terminated from the Faculty, if one student attends the exam on another behalf according to the policy, rules and regulations of the university.	
21.	 Other policies: All the teaching materials should be kept out the examination hall. the mobile phone is not allowed. There should be a respect between the student and his teacher. 	

Reviewed By	iewed By Vice Dean for Academic Affairs and Post Graduate Studies	
	Dr. Tarek A. Barakat	
	Dr. Ahmed Alwathaf	
	Dr. Mohammad Algorafi	
	Dr. Ahmed mujahed	
	Dr. Munaser Alsubri	

