1- Course Specification of Advanced Structural Analysis

I. (I. Course Identification and General Information:					
1.	Course Title:	Advanced Structural Analysis				
2.	Course Code & Number:	CE580				
			C.H		Credit	
3.	Credit hours:	Lecture.	Laboratory	Seminars.	Hours	
		3	-	-	3	
4.	Study semester at which this course is offered:	1st semester				
5.	Pre –requisite (if any):	Structural analysis 1 and 2 (BSc)				
6.	Co –requisite (if any):	Non				
7	Program (s) in which the course is	Master of Science in structural engineering				
/.	offered:	program				
8.	Language of teaching the course:	English + Ara	bic			
9.	Course type	Required				
10.	Location of teaching the course:	Class room				
11.	Prepared By:	Prof. Dr. Ahmed Hasan Alwathaf				
12.	Date of Approval					

II. Course Description:

The course exposes students to advanced methods of structural analysis using matrix structural analysis for most structures. The course also presents significant concepts necessary for finite element method in structural analysis. It provides student with theory and application of matrix flexibility and stiffness methods for beams, trusses, and rigid frames. Also, the course presents special topics such as nonlinear and plastic analysis.

III. C	ourse Intended learning outcomes (CILOs) of the course	Referenced PILOs
al	Demonstrate in depth understanding of knowledge of matrix methods and engineering physic to the structural analysis.	A1. Demonstrate in depth understanding of knowledge of applied mathematics and engineering science to the field of structural engineering.
a2	Connect knowledge of matrix analysis of structures with its implementation in software packages.	A2. Recognize and Explain the contemporary engineering technologies and issues in the specialization field of structural engineering.
		A3. Explain in-depth the principles of sustainable design and development of structural engineering.
		A4. Acquire advanced knowledge of research principles and methods applicable to the field of work or academic in structural engineering and related fields.
b1	Select principles in structural modelling that evaluate accurately structural response.	B1. Assess, select and apply appropriate principles, methodologies, techniques, tools and packages in the analysis, specification, development and evaluation of structural engineering systems.
b2	simulate structural members, supports, loads and analyze complex structural framed systems.	B2. Identify, formulate, analyze research and solve complex structural engineering problems.
b3	Apply matrix methods for analysis and find linear and nonlinear response of complex structural framed systems.	B3. Apply acquired knowledge of analysis and design for complex structural engineering systems and implementation process.
		C1. Develop research to solve structural engineering problems.
		C2. Use advanced methodology and skills to solve structural engineering problems.
c1	Combine matrix methods to solve problems encountering structural engineers such as; support settlement, interior hinges, elastic supports, members release, and elastic connections	C3. Design structural system, component, or process to meet desired needs within realistic constraints.
d1	Present information and ideas clearly and fluently in both written and spoken forms.	D1. Prepare a complete thesis and term-courses works/ tasks, write their documents and defend on them.
		D2. Demonstrate ethical principles, awareness of professional and ethical responsibility as well as knowledge of the standards utilized in related

III. Course Intended learning outcomes (CILOs) of the course		Referenced PILOs	
		fields.	
	Conduct independently research that	D3. Conduct independently and communicate	
d2	advances and extends knowledge in	research that advances and extends knowledge	
	analysis of structural systems.	and scholarship in related fields.	
		D4. Own intellectual independence, with	
		initiative and creativity in new situations and/or	
		for further learning, plan and execute original	
		research with full responsibility and	
		accountability for personal outputs.	

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching						
Strategies and Assessment Strategies:						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
a1. Demonstrate in depth understanding of knowledge of		Written exam				
matrix methods and engineering physic to the structural	Lecture	Assignment				
analysis.	self-study	Student presentation				
a2. Connect knowledge of matrix analysis of structures	presentation					
with its implementation in software packages.						

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
b1. Select principles in structural modelling that	Lecture,	Written exam,
evaluate accurately structural response.	self-study,	Written assignment,
b2. simulate structural members, supports, loads	presentation,	Presentations/
and analyze complex structural framed systems.	Analysis and Problem	Presenting, researches
b3. Apply matrix methods for analysis and find	Solving.	
linear and nonlinear response of complex structural		
framed systems.		

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
c1. Combine matrix methods to solve problems encountering structural engineers such as; support settlement, interior hinges, elastic supports, members release, and elastic connections	Lecture, self-study, presentation, Analysis and Problem Solving.	Written exam Written assignment Presentations/ Presenting researches

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:

8		
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
d1. Present information and ideas clearly and	Presentation,	present the paper,
fluently in both written and spoken forms.	independent study,	presentation, written
d2. Conduct independently research that advances	Presenting reports,	report.
and extends knowledge in analysis of structural	Presenting	
systems.	researches	

IV.	IV. Course Content:							
	A – Lecture A	spect:						
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	contact hours			
1	Introduction To Matrix Analysis Of Structures	a1, a2, b1 b2, b3	 Importance of matrix analysis, Classical Versus Matrix Methods, Classification of Framed Structures, Terms Definition, Kinematic and Static Indeterminacy, Fundamental Relationships for Structural Analysis, Flexibility and Stiffness Methods, 	1	3			

1)/		tonti					
IV. (
	A – Lecture Aspect:						
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	contact hours		
			 Principle of Virtual Work for Deformable Bodies, 				
2	Structural Modeling	a1, a2, b1 b2, b3, c1, d2	 Line Diagrams Modeling Process (members, nodes, supports, loads, material and geometrical properties) Load Path Thermal Effects Matrix Algebra 	1	3		
3	Matrix Flexibility Method	a1, a2, b1 b2, b3, c1	 Structure flexibility matrix Element flexibility matrix Formation of the structure-flexibility matrix from element-flexibility matrices Analysis of indeterminate structures Loads between nodal points 	3	9		
4	Matrix Stiffness Method (part I)	a1, a2, b1 b2, b3, c1	 Stiffness matrix Element stiffness matrix Formation of the structure-stiffness matrix from element-stiffness matrices 	2	6		
	Midterm Exam		•	1(8)	3		
5	Matrix Stiffness Method (part II)	a1, a2, b1 b2, b3, c1	Direct stiffness method: • trusses, • beams, and • frames	2	6		
6	Additional Topics in Matrix Methods	a1, a2, b1 b2, b3, c1, d2	 Support movement (settlement), Interior hinge, Elastic support, Releases in Members, Elastic Connections. 	2	6		
7	Plastic Analysis	a1, a2, b1 b2, b3, c1, d2	Plastic moment, plastic hingePlastic behavior of beamsPlastic behavior of frames	1	3		
8	Non-Linear Analysis of Structures	a1, a2, b1 b2, b3, c1, d2	Material nonlinearity,Geometric nonlinearity,Iterative methods for nonlinear analysis solution.	1	3		
9	Presentation of course-projects	a1, a2, b1 b2, b3, c1, d1, d2	Seminar in Structural Engineering Topics	1	3		
	Final Exam		1	3			
Number of Weeks /and Units Per Semester				16	48		

B - Laboratory Aspect:						
Order	Tasks/ Experiments	Number of Weeks	contact hours	Learning Outcomes		
1	(NA)					
2						

Number of Weeks /and Units Per Semester		

_

	V. Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes			
1	Assignments	5,8,11,13,14,15	15	10%	a1, a2, b1 b2, b3, c1, d1			
2	Midterm exam	8	22.5	15%	a1, a2, b1 b2, b3, c1, d1			
3	Quizzes	Two times randomly	15	10%	a1, a2, b1 b2, b3, c1, d1			
4	Course project	15	22.5	15 %	a1, a2, b1 b2, b3, c1, d1, d2			
5	Final exam	16	75	50%	a1, a2, b1 b2, b3, c1, d1			
	Total		150%	100%				

VI.	Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1	Matrix Flexibility Method	a1, a2, b1 b2, b3, c1, d1	5	3
2	Matrix Stiffness Method (part I)	a1, a2, b1 b2, b3, c1, d1	8	3
3	Matrix Stiffness Method (part II)	a1, a2, b1 b2, b3, c1, d1	11	3
4	Additional Topics in Matrix Methods	a1, a2, b1 b2, b3, c1, d1	13	2
5	Plastic Analysis	a1, a2, b1 b2, b3, c1, d1	14	2
6	Non-Linear Analysis of Structures	a1, a2, b1 b2, b3, c1, d1	15	2
	Total			15

VII	. Report:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1	Report (and presentation) in Structural Engineering Topics	a1, a2, b1 b2, b3, c1, d1, d2	15	22.5
	Total			22.5

VIII. Learning Resources and Facilities:
• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).
1- Required Textbook(s) (maximum two).
 CHAJES (1998), Structural Analysis, Prentice-Hall F. ARBABI (1991), Structural Analysis and Behavior, McGraw Hill, Inc.
2- Essential References.
 A. KASSIMALI (2012) MATRIX ANALYSIS OF STRUCTURES, Cengage Learning, 2nd ed. A. GHALI, A.M. NEVILLE, T.G. BROWN (2009) Structural Analysis a unified classical and matrix approach, Spon Press, 6th ed.
3- Electronic Materials and Web Sites etc.
-
Educational and research Facilities and Equipment Required
Technology Resources
(AV, data show, Smart Board, software, etc.)

Other Resources

-

(Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)

IX	Course Policies:
1.	Class Attendance: The students should have more than 75 % of attendance according to rules and regulations of the faculty.
2.	Tardy: The students should respect the timing of attending the lectures. They should attend within 10 minutes from starting of the lecture.
3.	Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for midterm exam and final exam.
4.	Assignments & Projects: The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.
5.	Cheating: If any cheating occurred during the examination, the student is not allowed to continue and he/she has to face the examination committee for enquires.
6.	Plagiarism: The student will be terminated from the Faculty, if one student attends the exam on another behalf according to the policy, rules and regulations of the university.
7.	 Other policies: All the teaching materials should be kept out the examination hall. the mobile phone is not allowed. There should be a respect between the student and his teacher.

Course plan of Advanced Structural Analysis

	I. Course Identification and General Information:					
.1	Course Title:	Advanced Structural Analysis				
.2	Course Code & Number:	CE580				
			C.H	-	Credit	
.3	Credit hours:	Lecture.	Laboratory	Seminars.	Hours	
		3	-	-	3	
.4	Study semester at which this course is offered:	1st semester				
.5	Pre –requisite (if any):	Structural analysis 1 and 2 (BSc)				
.6	Co –requisite (if any):	Non				
.7	Program (s) in which the course is offered:	Master of Science in structural engineering				
.8	Language of teaching the course:	English + Ara	bic			
.9	Course type	Required				
.10	Location of teaching the course:	Class room				
.11	Prepared By:	Prof. Dr. Ahmed Hasan Alwathaf				
.12	Date of Approval					

II. Course Description:

The course exposes students to advanced methods of structural analysis using matrix structural analysis for most structures. The course also presents significant concepts necessary for finite element method in structural analysis. It provides student with theory and application of matrix flexibility and stiffness methods for beams, trusses, and rigid frames. Also, the course presents special topics such as nonlinear and plastic analysis.

III. C	ourse Intended learning outcomes (CILOs) of the course	Referenced PILOs
al	Demonstrate in depth understanding of knowledge of matrix methods and engineering physic to the structural analysis.	A1. Demonstrate in depth understanding of knowledge of applied mathematics and engineering science to the field of structural engineering.
a2	Connect knowledge of matrix analysis of structures with its implementation in software packages.	A2. Recognize and Explain the contemporary engineering technologies and issues in the specialization field of structural engineering.
		A3. Explain in-depth the principles of sustainable design and development of structural engineering.
		A4. Acquire advanced knowledge of research principles and methods applicable to the field of work or academic in structural engineering and related fields.
b1	Select principles in structural modelling that evaluate accurately structural response.	B1. Assess, select and apply appropriate principles, methodologies, techniques, tools and packages in the analysis, specification, development and evaluation of structural engineering systems.
b2	simulate structural members, supports, loads and analyze complex structural framed systems.	B2. Identify, formulate, analyze research and solve complex structural engineering problems.
b3	Apply matrix methods for analysis and find linear and nonlinear response of complex structural framed systems.	B3. Apply acquired knowledge of analysis and design for complex structural engineering systems and implementation process.
		C1. Develop research to solve structural engineering problems.
		C2. Use advanced methodology and skills to solve structural engineering problems.
c1	Combine matrix methods to solve problems encountering structural engineers such as; support settlement, interior hinges, elastic supports, members release, and elastic connections	C3. Design structural system, component, or process to meet desired needs within realistic constraints.
d1	Present information and ideas clearly and fluently in both written and spoken forms.	D1. Prepare a complete thesis and term-courses works/ tasks, write their documents and defend on them.
		D2. Demonstrate ethical principles, awareness of professional and ethical responsibility as well as knowledge of the standards utilized in related

III. Course Intended learning outcomes (CILOs) of the course		Referenced PILOs	
		fields.	
	Conduct independently research that	D3. Conduct independently and communicate	
d2	advances and extends knowledge in	research that advances and extends knowledge	
	analysis of structural systems.	and scholarship in related fields.	
		D4. Own intellectual independence, with	
		initiative and creativity in new situations and/or	
		for further learning, plan and execute original	
		research with full responsibility and	
		accountability for personal outputs.	

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching				
Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
a1. Demonstrate in depth understanding of knowledge of		Written exam		
matrix methods and engineering physic to the structural	Lecture	Assignment		
analysis.	self-study	Student presentation		
a2. Connect knowledge of matrix analysis of structures	presentation			
with its implementation in software packages.				

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
b1. Select principles in structural modelling that	Lecture,	Written exam,
evaluate accurately structural response.	self-study,	Written assignment,
b2. simulate structural members, supports, loads	presentation,	Presentations/
and analyze complex structural framed systems.	Analysis and Problem	Presenting, researches
b3. Apply matrix methods for analysis and find	Solving.	
linear and nonlinear response of complex structural		
framed systems.		

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
c1. Combine matrix methods to solve problems encountering structural engineers such as; support settlement, interior hinges, elastic supports, members release, and elastic connections	Lecture, self-study, presentation, Analysis and Problem Solving.	Written exam Written assignment Presentations/ Presenting researches

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:

8		
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
d1. Present information and ideas clearly and	Presentation,	present the paper,
fluently in both written and spoken forms.	independent study,	presentation, written
d2. Conduct independently research that advances	Presenting reports,	report.
and extends knowledge in analysis of structural	Presenting	
systems.	researches	

IV.	Course Cont	tent:			
	A – Lecture A	spect:			
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	contact hours
1	Introduction To Matrix Analysis Of Structures	a1, a2, b1 b2, b3	 Importance of matrix analysis, Classical Versus Matrix Methods, Classification of Framed Structures, Terms Definition, Kinematic and Static Indeterminacy, Fundamental Relationships for Structural Analysis, Flexibility and Stiffness Methods, 	1	3

IV. Course Contents					
IV. Course Content:					
	A – Lecture A	Aspect:			
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	contact hours
			 Principle of Virtual Work for Deformable Bodies, 		
2	Structural Modeling	a1, a2, b1 b2, b3, c1, d2	 Line Diagrams Modeling Process (members, nodes, supports, loads, material and geometrical properties) Load Path Thermal Effects Matrix Algebra 	1	3
3	Matrix Flexibility Method	a1, a2, b1 b2, b3, c1	 Structure flexibility matrix Element flexibility matrix Formation of the structure-flexibility matrix from element-flexibility matrices Analysis of indeterminate structures Loads between nodal points 	3	9
4	Matrix Stiffness Method (part I)	a1, a2, b1 b2, b3, c1	 Stiffness matrix Element stiffness matrix Formation of the structure-stiffness matrix from element-stiffness matrices 	2	6
	Midterm Exam		•	1(8)	3
5	Matrix Stiffness Method (part II)	a1, a2, b1 b2, b3, c1	Direct stiffness method: • trusses, • beams, and • frames	2	6
6	Additional Topics in Matrix Methods	a1, a2, b1 b2, b3, c1, d2	 Support movement (settlement), Interior hinge, Elastic support, Releases in Members, Elastic Connections. 	2	6
7	Plastic Analysis	a1, a2, b1 b2, b3, c1, d2	Plastic moment, plastic hingePlastic behavior of beamsPlastic behavior of frames	1	3
8	Non-Linear Analysis of Structures	a1, a2, b1 b2, b3, c1, d2	Material nonlinearity,Geometric nonlinearity,Iterative methods for nonlinear analysis solution.	1	3
9	Presentation of course-projects	a1, a2, b1 b2, b3, c1, d1, d2	Seminar in Structural Engineering Topics	1	3
Final Exam				1	3
Number of Weeks /and Units Per Semester				16	48

B - Laboratory Aspect:				
Order	Tasks/ Experiments	Number of Weeks	contact hours	Learning Outcomes
1	(NA)			
2				

Number of Weeks /and Units Per Semester		

	V. Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1	Assignments	5,8,11,13,14,15	15	10%	a1, a2, b1 b2, b3, c1, d1	
2	Midterm exam	8	22.5	15%	a1, a2, b1 b2, b3, c1, d1	
3	Quizzes	Two times randomly	15	10%	a1, a2, b1 b2, b3, c1, d1	
4	Course project	15	22.5	15 %	a1, a2, b1 b2, b3, c1, d1, d2	
5	Final exam	16	75	50%	a1, a2, b1 b2, b3, c1, d1	
Total			150%	100%		

VI.	VI. Assignments:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1	Matrix Flexibility Method	a1, a2, b1 b2, b3, c1, d1	5	3		
2	Matrix Stiffness Method (part I)	a1, a2, b1 b2, b3, c1, d1	8	3		
3	Matrix Stiffness Method (part II)	a1, a2, b1 b2, b3, c1, d1	11	3		
4	Additional Topics in Matrix Methods	a1, a2, b1 b2, b3, c1, d1	13	2		
5	Plastic Analysis	a1, a2, b1 b2, b3, c1, d1	14	2		
6	Non-Linear Analysis of Structures	a1, a2, b1 b2, b3, c1, d1	15	2		
	Total			15		

VII	VII. Report:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1	Report (and presentation) in Structural Engineering Topics	a1, a2, b1 b2, b3, c1, d1, d2	15	22.5		
Total				22.5		

VIII. Learning Resources and Facilities:
• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).
1- Required Textbook(s) (maximum two).
 CHAJES (1998), Structural Analysis, Prentice-Hall F. ARBABI (1991), Structural Analysis and Behavior, McGraw Hill, Inc.
2- Essential References.
 A. KASSIMALI (2012) MATRIX ANALYSIS OF STRUCTURES, Cengage Learning, 2nd ed. A. GHALI, A.M. NEVILLE, T.G. BROWN (2009) Structural Analysis a unified classical and matrix approach, Spon Press, 6th ed.
3- Electronic Materials and Web Sites <i>etc</i> .
-
Educational and research Facilities and Equipment Required
Technology Resources

(AV, data show, Smart Board, software, etc.)

Other Resources

-

(Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)

IV	Course Delision
	A. Course Policies:
0	Class Attendance:
0.	The students should have more than 75 % of attendance according to rules and regulations of the faculty
	Tardy:
9.	The students should respect the timing of attending the lectures. They should attend within 10 minutes from starting of the lecture.
	Exam Attendance/Punctuality:
10.	The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for midterm exam and final exam.
	Assignments & Projects
11.	The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.
	Cheating'
12.	If any cheating occurred during the examination, the student is not allowed to continue and he/she has to face the examination committee for enquires.
	Plagiarism'
13.	The student will be terminated from the Faculty, if one student attends the exam on another behalf according to the policy, rules and regulations of the university.
	Other policies:
14.	• All the teaching materials should be kept out the examination hall.
	• the mobile phone is not allowed.
	• There should be a respect between the student and his teacher.