1- Course Specification of: Advanced Power Electronics Course Code (PME538)

I.	I. General Information About the Course:						
1.	Course Title:	Advance	d Power El	ectronics			
2.	Course Code and Number:	PME538					
		Credit Hours					
3.	Credit Hours:	Lecture	Practical	Seminar/Tutorial	Total		
		3	-	-	3		
4.	Study Level and Semester:	First Sem	ester				
5.	Pre-requisites (if any):			-			
6.	Co-requisites (if any):			-			
7.	Program (s) in which the course is offered:	MSc. in E	Electrical Po	wer Engineering			
8.	Language of teaching the course:	English					
9.	Study System:	Courses & Thesis					
10.	Prepared By:	Assoc. Prof. Dr. Radwan M. AL Bouthigy					
11.	Reviewed by:	Prof. Dr.	Eng. Omar	H. Al-Sakaf			
12.	Date of Approval:						

II. Course Description:

With growth and advancements in the field of power electronics, devices around in realtime are able to communicate in a better way than one can imagine. This course provides with students advanced concepts on power electronics design, advanced converters and inverters and capabilities, as well as, dc and ac drives control design. Course covers: un controlled and controlled rectifier, multi pulse converters, isolated and un isolated dc-dc converter, Pulse width – Modulated Inverters, AC Voltage converters and AC/DC drives Throughout the course projects and case studies works, students well develop their skills in power electronics and drives design and implementation.

III. Course Intended Learning Outcomes (CILOs):

Upon successful completion of **Advanced Power Electronics Course**, the graduates will be able to:

- **a1.** Demonstrate understanding of the theory and practice of modern power electronics system operation and design.
- **a2**.Explain in detail the challenges of sustainable design of modern AC / DC drives.
- **b1.** Solve complex power electronic problems by selecting and applying appropriate tools and techniques.
- **b2.** Develop new ideas to improve the scientific literature in the power electronics and drives field.
- **c1.** Apply modern analysis, design and simulation tools of modern power electronics system.
- **c2** .Apply other areas of knowledge jointly with other professions to arrive at a solution for complex drives problems.
- **d1.** Establish leadership, analytical and problem-solving skills appropriate to the power electronics sector with focus on drives improvement.
- d2. Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the field of power electronics systems design and integration.

IV. Alignment of Course Intended Learning Outcomes (CILOs) to Program Intended Learning Outcomes (PILOs)

	CILOs	PILOs
a. K sı E bo	Example to: In the second se	 A. Knowledge and Understanding: Upon successful completion of the MSc. In Electrical power Engineering Program, the graduates will be able to:
a1.	Demonstrate understanding of the theory and practice of modern power electronics system operation and design.	A1. Demonstrate in-depth understanding of the theory and practice of modern electrical power systems design and operation and system identification.
a2.	Explain in detail the challenges of sustainable design of modern AC / DC drives.	A3. Explain in detail the key considerations and challenges of sustainable design and development of modern electrical power system components.
b. C ca D	ognitive/ Intellectual Skills: Upon successful ompletion of the Advanced Power Electronics and rive Course, the graduates will be able to:	B. Cognitive/ Intellectual Skills: Upon successful completion of the MSc. In Electrical power Engineering Program, the graduates will be able to:
b1.	Solve complex power electronic problems by selecting and applying appropriate tools and techniques.	B1. Identify, formulate, and solve complex power engineering problems by selecting and applying appropriate tools and techniques.
b2.	Develop new ideas to improve the scientific literature in the power electronics and drives field.	B2. Critically review the scientific literature for effective justification and support of results and decisions.

c. P su E bo	rofessional and Practical Skills: Upon accessful completion of the Advanced Power lectronics and Drive Course, the graduates will e able to:	C. Professional and Practical Skills: Upon successful completion of the MSc. In Electrical power Engineering Program, the graduates will be able to:		
c1.	Apply modern analysis, design and simulation tools of modern power electronics system.	C1. Apply modern tools for research, computation, simulation, analysis, and design of modern power systems.		
c2.	Apply other areas of knowledge jointly with other professions to arrive at a solution for complex drives problems.	C2. Recognize the interdisciplinary nature of technical problems and apply other areas of knowledge to the solution, and work with other professions to arrive at a solution for complex engineering problems		
d. T 01 C	Transferable Skills: Upon successful completion f the Advanced Power Electronics and Drive Course, the graduates will be able to:	D. Transferable Skills: Upon successful completion of the MSc. In Electrical power Engineering Program, the graduates will be able to:		
d1.	Establish leadership, analytical and problem- solving skills appropriate to the power electronics sector with focus on drives improvement.	D1. Demonstrate leadership skills in the workplace, to function professionally in a globally competitive world, and to communicate engineering results effectively.		
d2.	Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the field of power electronics systems design and integration.	D2. Realize the relevance of economics, ethics and teamwork to the profession.		

V. Alignment of CILOs to Teaching and Assessment Strategies						
a. Alignment of Knowledge and Understanding CILOs:						
	Knowledge and Understanding CILOs	Teaching Strategies	Assessment Strategies			
a1.	Demonstrate understanding of the theory and practice of modern power electronics system operation and design.	 Lectures, Self-Learning Problems/Studies, 	Written Exam,Assignments.			
a2.	Explain in detail the challenges of sustainable design of modern AC / DC drives. Alignment of Intellectual Skills CILO	 Lectures, Active learning. 	Written Exam,Assignments			
	Intellectual Skills CILOs	Teaching Strategies	Assessment Strategies			
b1.	Solve complex power electronic problems by selecting and applying appropriate tools and techniques.	Lectures,Independent Study,Brainstorming.	Survey,Written Exam,Assignments			
	I	0	U			
b2.	Develop new ideas to improve the scientific literature in the power electronics and drives field.	 Lectures, Project Supervision, Self-Learning, Brainstorming, 	Written Exam,Assignments.			
b2.	Develop new ideas to improve the scientific literature in the power electronics and drives field. Alignment of Professional and Practic	 Lectures, Project Supervision, Self-Learning, Brainstorming, cal Skills CILOs: 	 Written Exam, Assignments. 			

c1.	Apply modern analysis, design and simulation tools of modern power electronics system.	 Case Study, Simulation Exercises, Brainstorming, Presentations, 	 Written Research Proposal, Thesis and Publication.
c2.	Apply other areas of knowledge jointly with other professions to arrive at a solution for complex drives problems.	 Self-Learning, Case Study, Simulation Exercises, Brainstorming, Presentations, 	 Written Research Proposal, Thesis and Publication.
d	. Alignment of Transferable (Genera	I) Skills CILOs:	
	Transferable (General) Skills CILOs	Teaching Strategies	Assessment Strategies
d1.	Establish leadership, analytical and problem-solving skills appropriate to the power electronics sector with focus on drives improvement.	Independent Study,Presentation,Publish Research Papers.	Written Exam,Written Report.
d2.	Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the field of power electronics systems design and integration.	 Dissertation Defenses and Presentation, Independent Study, Presentation, Brainstorming, Publish Research Papers. 	Written Exam,Assignments,Written Report.

VI. Course Content					
1.	Theoretical Aspe	et			
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs
1	Semiconductor switching devices used in power electronics	 Power Electronics Concepts Electronics Switches Switch selection Classification of switches Generic switching Converter 	1	3	a1,a2
2	Uncontrolled Rectifiers Uncontrolled Rectifiers	 Single phase uncontrolled rectifiers Three phase uncontrolled rectifiers Harmonic analysis Output voltage with LC filter Simulating uncontrolled rectifiers by using MATLAB 	1	3	b1,b2
3	Controlled Rectifiers	 Single phase controlled rectifiers 	2	6	a1,b1,b2

VI. Course Content					
1.	Theoretical Aspe	ect			
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs
		 Three phase controlled rectifiers Harmonic analysis Power factor improvement Simulating uncontrolled rectifiers by using MATLAB 			
4	Multi pulse Converter	 18 -pulse series type diode rectifier 24 -pulse series type diode rectifier 12pulse separate type diode rectifier 18 -pulse separate type diode rectifier 12SCR rectifiers with inductive load 18SCR rectifiers with inductive load 24 SCR rectifiers with inductive load 	1	3	a2,b1,b2
5	UN isolated DC –DC Chopper Converters	 Step down chopper converter Step up chopper converter Classifications of chopper converter Simulating DC – DC chopper by using MATLAB 	1	3	a2,b2,c1,c2,d1
6	Isolated DC DC Chopper converter	 Fly back converter 	1	3	a1,b1,d1
7	Pulse width – Modulated Inverters	 Single-Phase Voltage Source Inverters Three-Phase Voltage Source Inverters Current Source Inverters Pulse width modulation technique Harmonic analysis Closed-Loop Operation of Inverters Simulating DC – AC inverter by using MATLAB 	1	3	c1,c2,d1,d2

VI. Course Content					
1.	Theoretical Aspe	ct			
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs
8	Mid Term Exam	 All Topics 	1	3	a1,a2,b1,b2
9	AC Voltage converter	 Single Phase AC Controllers. Three Phase AC Controllers. Harmonic analysis Cycloconverters Simulating AC voltage converter by using MATLAB 	2	6	b1,b2,c1,c2
10	DC Drives	 Single phase drives Three phase drive Chopper drives Closed loop control of DC motors Simulating DC drives by using MATLAB 	2	6	a1,a2,b1,c1,d2
11	AC Drives	 Stator voltage control Rotor voltage control Frequency control Voltage frequency control Current control Voltage, current and frequency control Closed loop control of induction motor Synchronous motor control Simulating DC drives by using MATLAB 	1	3	a2,b2,c1,c2,d1,d2
12	Case Studies	 Power converters for specific applications such as utility, domestic appliance, electric vehicle and industrial applications 	1	3	a1,a2,b1,b2,c1,c2,d1,d2
13	Final Exam	All Topics	1	3	a1,a2,b1,b2
N	umber of Weeks /and	l Contact Hours Per Semester	16	48	

2.	Practical As	ect NA			
Order		Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs

1	None		
	Number of Weeks /and Contact Hours Per Semester		

3.	Tutorial Aspect:			
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)
1	None			
	Number of Weeks /and Units Per Semester	15	30	

VII. Teaching Strategies:

- Lectures,
- Self-Learning,
- Case Study,
- Simulation Exercises,
- Brainstorming,
- Presentations,
- Group/Individual Projects and Studies,

VIII.Assessment Methods of the Course:

- Written Exam,
- Assignments, including reports and presentations
- Written Research Proposal.

IX. Tasks and Assignments:								
No	Assignments/ Tasks		Individua Group	ı l /	Mark	ark Wee Due		CILOs (symbols)
1	Assignments:Assignment 1: Design and implementation of controlled rectifier circuits using MATLAB toolsAssignment 2: Design and implementation of DC- AC rectifier circuits using MATLAB tools Assignment 3: Individual search assignments with following presentations			Individual		5 th , 10 th , & 12 th		a1, a2, b1, b2, c1, c2, d1, d2
2	Mini/Major Project: Students works and submit their indi- group Projects using Web searching, Hi Programming and simulation to des implement power electronics application	Individual/ Group		16	From the 4 th to 14 th		a1, a2, b1, b2, c1, c2, d1, d2	
3	Project presentation & Case studies		Individua Group	ı l /	10	Work fi the 4 th 14 th we	rom to eks	a2, b1, b2, c1, c2, d1, d2
	Total Score				40	==		====
X.	Learning Assessment:							
No.	Assessment Tasks	Week due	Mark] Fi	Proportion nal Assess	n of sment		CILOs
1	Assignments	4 th to 14 th	40		40%		a1, a2, b1, b2, c1, c2, d1, d2	
3	Midterm Exam	8 th	20		20%		a1	., a2, b1, b2
4	Final Exam (Theoretical)	16 th	40		40%		a1	., a2, b1, b2
	Total				100%)		===

XI. Learning Resources :
1. Required Textbook(s) :
1. M. H. Rashid, 2014, "Power electronics: circuits, devices, and applications," 4rd edition,
Prentice Hall
2. Austin Hughes, (2006) Electric Motors and Drives Fundamentals, Types and
Applications, 3rd Edition, Elsevier Ltd.
2. Essential References:
1. Cyril W. Lander, 1993, "Power electronics", 3rd edition, McGraw-Hill.
2. B. W. Williams, 1992, Power Electronics, Devices, Drivers, Application and Passive
components
3. Fang Lin Luo, Hong Ye, Munammad Rashid, "Digital Power Electronics and Applications" 2005. Floor USA
Applications", 2005, Elsev USA 4 E. Asha, Dower Electronics control in Electrical system 1st, 2002, Newnos
4. E. Acha, I ower Electronics control in Electrical system, 1st, 2002, Newles
5. Electronic Materials and Web Sites eu.
2 www.electricurive.com/
2. www.electricmachinery.com/
3. www.goelectricdrive.com/
4. <u>http://www.ece.tamu.edu/~empelab/</u>
Journal :
IEEE Publisher
https://www.ieee.org
Elsevier Publisher
https://www.elsevier.org
Science Direct Publisher
https://www.Sciencedirect.com

 الضوابط والسياسات المتبعة في المقرر Course Policies 	
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:	
سياسة حضور الفعاليات التعليمية Class Attendance:	1
 يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. 	
 يقدم أسبتاذ المقرر تقريرا بحضور وغياب الطلاب للقسم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% 	
ويتم اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
 يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع سماعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث 	
مرات يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
ـ لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان	
 إذا تغيب الطالب عن الامتحان النهائي تُطبق اللوائح الخاصة بنظام الامتحان في الكلية. 	
التعيينات والمشاريع Assignments & Projects:	4
 يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها. 	
 ـ إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه. 	
الغش Cheating:	5
ـ في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب.	
 في حال ثبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف. 	
الانتحال Plagiarism:	6
- في حالة وجود شخص بنتجا، شخصية طلاب لأداء الامتحان ندابة عنه تطبق اللائحة الخاصة بذلك	
- سي کانه وجود شکس پلکل سیسې کتب ود و رو سکل بیبه که سیلی رو که رو که میلی ایر که وجود شکس بیر که وجود ا	7
- أي سياسات أخرى مثل استخدام الموبايل أو مواعيد نسليم التخليفات الح	

Academic Year:

Course Plan (Syllabus): Advanced Power Electronics

I. Information about Faculty Member Responsible for the Course:								
Name	Assoc. Prof. Dr. Radwan M. AL Bouthigy	an M. Office Hours						
Location & Telephone No.	775284933	SAT	SUN	MON	TUE	WED	THU	
E-mail	radwan006@yahoo.com							

II.	I. General information about the course:					
1.	Course Title	Advance	Advanced Power Electronics			
2.	Course Code and Number	PME538	8			
			Credit H	ours	Total	
3.	Credit Hours	Lecture	Practical	Seminar/Tutorial	Total	
		3	-	-	3	
4.	Study Level and Semester	First Seme	ster			
5.	Pre-requisites			-		
6.	Co –requisite			-		
7.	Program (s) in which the course	MSc. in Ele	ectrical Power	Engineering		
`	is offered					
8.	Language of teaching the course	English				
9.	Location of teaching the course	Faculty of	Faculty of Engineering			

II. Course Description:

With growth and advancements in the field of power electronics, devices around in real-time are able to communicate in a better way than one can imagine. This course provides with students advanced concepts on power electronics design, advanced converters and inverters and capabilities, as well as, dc and ac drives control design. Course covers: un controlled and controlled rectifier, multi pulse converters, isolated and un isolated dc-dc converter, Pulse width – Modulated Inverters, AC Voltage converters and AC/DC drives Throughout the course projects and case studies works, students well develop their skills in power electronics and drives design and implementation.

IV. Course Intended Learning Outcomes (CILOs):

Upon successful completion of the Advanced power electronics and drives course, graduate students will be able to:

- **a1.** Demonstrate of the theory and practice of modern power electronics system operation and design. -
- **a2.** Explain in detail the challenges of sustainable design of modern AC / DC drives.
- **b1.** Solve complex power electronic problems by selecting and applying appropriate tools and techniques.
- **b2.** Develop new ideas to improve the scientific literature in the power electronics and drives field.

- **c1.** Apply modern tools simulation, analysis and design of modern power electronics system.
- **c2** .Apply other areas of knowledge to the solution, and work with other professions to arrive at a solution for complex drives problems.
- **d1.** Establish leadership, analytical and problem-solving skills appropriate to the power electronics sector with focus on drives improvement.
- d2. Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the field of power electronics systems design and integration.

V. Course Content:						
	1. Theoretical Aspe	ct:				
Order	Units	Sub Topics	Week Due	Contact Hours		
1	Semiconductor switching devices used in power electronics	 Power Electronics Concepts Electronics Switches Switch selection Classification of switches Generic switching Converter 	1	3		
2	Uncontrolled Rectifiers Uncontrolled Rectifiers	 Single phase uncontrolled rectifiers Three phase uncontrolled rectifiers Harmonic analysis Output voltage with LC filter Simulating uncontrolled rectifiers by using MATLAB 	1	3		
3	Controlled Rectifiers	 Single phase controlled rectifiers Three phase controlled rectifiers Harmonic analysis Power factor improvement Simulating uncontrolled rectifiers by using MATLAB 	2	6		
4	Multi pulse Converter	 18 -pulse series type diode rectifier 24 -pulse series type diode rectifier 12pulse separate type diode rectifier 18 -pulse separate type diode rectifier 12SCR rectifiers with inductive load 18SCR rectifiers with inductive load 24 SCR rectifiers with inductive load 	1	3		
5	UN isolated DC –DC Chopper Converters	 Step down chopper converter Step up chopper converter Classifications of chopper converter Simulating DC – DC chopper by using MATLAB 	1	3		
6	Isolated DC DC Chopper converter	Fly back converter	1	3		
7	Pulse width – Modulated Inverters	 Single-Phase Voltage Source Inverters Three-Phase Voltage Source Inverters Current Source Inverters 	1	3		

V. Co	V. Course Content:					
	1. Theoretical Aspe	ct:				
Order	Units	Sub Topics	Week Due	Contact Hours		
		 Pulse width modulation technique Harmonic analysis Closed-Loop Operation of Inverters Simulating DC – AC inverter by using MATLAB 				
8	Mid Term Exam	All Topics	1	3		
9	AC Voltage converter	 Single Phase AC Controllers. Three Phase AC Controllers. Harmonic analysis Cycloconverters Simulating AC voltage converter by using MATLAB 	1	3		
10	DC Drives	 Single phase drives Three phase drive Chopper drives Closed loop control of DC motors Simulating DC drives by using MATLAB 	2	6		
11	AC Drives	 Stator voltage control Rotor voltage control Frequency control Voltage frequency control Current control Voltage, current and frequency control Closed loop control of induction motor Synchronous motor control Simulating DC drives by using MATLAB 	2	6		
12	Case Studies	 Power converters for specific applications such as utility, domestic appliance, electric vehicle and industrial applications 	1	3		
13	Final Exam	All Topics	1	3		
	Number of Weeks /and Contact Hours Per Semester1648					

	2. Practical Aspect			
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs
1	 None 			
	Number of Weeks /and Contact Hours Per Semester			

3. Training/ Tutorials/ Exercises Aspects:						
Order	Tutorials/ Exercises	Week Due	Contact Hours			
1	 None 					
Numb	er of Weeks /and Contact Hours Per Semester					

VI. Teaching Strategies:

- Lectures,
- Self-Learning,
- Case Study,
- Simulation Exercises,
- Brainstorming,
- Presentations,
- Group/Individual Projects and Studies,

VII.Assessment Methods of the Course:

- Written Exam,
- Assignments, including reports and presentations
- Written Research Proposal.

VII	VIII. Tasks and Assignments:					
No	Assignments	Individual /Groups	Mark	Week Due		
1	Assignments: Assignment 1: Design and implementation of controlled rectifier circuits using MATLAB tools Assignment 2: Design and implementation of DC- AC rectifier circuits using MATLAB tools Assignment 3: Individual search assignments with following presentations	Individual	14	5 th , 10 th , & 12 th		
2	Mini/Major Project: Graduates works and submit their individual & group Projects using Web searching, High-Level Programming and simulation to design and implement power electronics applications. Project presentation & Case studies	Individual/ Group Individual/ Group	16 10	From the 4 th to 14 th Work from the 4 th to 14 th weeks		
	Total Score		40			

D	IX. Learning Assessment:						
No	Assessment Method	Week Due	Mark	Proportion of Final Assessment %			
1	Assignments	4 th to 14 th	40	40%			
3	Midterm Exam	8 th	20	20%			
4	Final Exam (Theoretical)	16 th	40	40%			
	Total المجموع			100 %			

X. L	earning Resources:
1.	Required Textbook(s) :
1.	M. H. Rashid, 2014, "Power electronics: circuits, devices, and applications," 4rd edition,
	Prentice Hall
2.	Austin Hughes, (2006) Electric Motors and Drives Fundamentals, Types and
	Applications, 3rd Edition, Elsevier Ltd.
2.	Essential References:
1.	Cyril W. Lander, 1993, "Power electronics", 3rd edition, McGraw-Hill.
2.	B. W. Williams, 1992, Power Electronics, Devices, Drivers, Application and Passive
	components
3.	Fang Lin Luo, Hong Ye, Muhammad Rashid, "Digital Power Electronics and
	Applications", 2005, Elsev USA
4.	E. Acha, Power Electronics control in Electrical system, 1st , 2002, Newnes
3.	Electronic Materials and Web Sites etc.
1.	www.goelectricdrive.com/
2.	www.electricmachinery.com/
3.	www.goelectricdrive.com/
4.	http://www.ece.tamu.edu/~empelab/
Journal :	
	IEEE Publisher
	https://www.ieee.org
	Elsevier Publisher
	https://www.elsevier.org
	Science Direct Publisher
	https://www.Sciencedirect.com

• الضوابط والسياسات المتبعة في المقرر Course Policies)
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتى:	
سياسة حضور الفعاليات التعليمية Class Attendance:	1
 لِنتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. 	
 لقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسَّم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% 	
ويتم اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
- يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث	
مرات يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
ا - لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان	
- إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
التعيينات والمشاريع Assignments & Projects:	4
 يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها. 	
 ـ إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه. 	
الغش Cheating:	5
 في حال تبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب. 	
- في حال ثبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.	
الانتحال Plagiarism:	6
– في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك	
سیاسات أخری Other policies:	7
 أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ 	