3-Course Specification of: Automatic Reactive Power Compensation Course Code (PME5312)

	I. General Information About the Course:						
1.	Course Title:	Automat	ic Reactive	Power Compensat	tion		
2.	Course Code and Number:	PME5312	2				
			Credit	Hours	Total		
3.	Credit Hours:	Lecture	Practical	Seminar/Tutorial	Total		
		3	-	-	3		
4.	Study Level and Semester:	Second Semester					
5.	Pre-requisites (if any):	-					
6.	Co-requisites (if any):			-			
7.	Program (s) in which the course is offered:	MSc. in E	Electrical Po	wer Engineering			
8.	Language of teaching the course:	English					
9.	Study System:	Courses & Thesis					
10.	Prepared By:	Assoc. Prof. Dr. Radwan M. AL Bouthigy					
11.	Reviewed by:	Dr.					
12.	Date of Approval:						

II. Course Description:

This course provides advanced concepts on Flexible ac Transmission Systems design, advanced STATCOM architecture and capabilities, as well as, System UPFC design. With growth and advancements in the field of electronics and power system, devices around in real-time are able to reactive power compensation in a better way than one can imagine. The future of FACTS systems lie in the advancement of technologies that enable faster compensation with high interwoven connections between different devices. Course covers, Reactive-Power Control in Electrical Power Transmission Systems, Principles of Conventional Reactive-Power Compensators, SVC Control Components and Models ,Concepts of SVC Voltage Control ,SVC Applications, Thyristor-Controlled Series Capacitor (TCSC) ,TCSC Applications, Coordination of FACTS Controllers , STATCOM, SSSCand UPFC. Throughout course projects & case study works, students develop their skills in MATLAB design and implementation.

III. Course Intended Learning Outcomes (CILOs):

Upon successful completion of **Advanced Power Electronics Course**, the graduates will be able to:

a1. Demonstrate understanding of the theory and practice of FACTS system operation and design.

- **a2.** Explain in detail the challenges of sustainable design of STATCM / SSSC systems.
- **b1.** Solve complex reactive power compensation problems by selecting and applying appropriate tools and techniques.

b2. Progress new ideas to improve the scientific literature in the power systems and drives field.

c1. Apply modern analysis, design and simulation tools of modern FACTS system.

- **c2**. Diagnose other areas of knowledge jointly with other professions to arrive at a solution for complex reactive power compensation problems.
- **d1.** Establish leadership, analytical and problem-solving skills appropriate to the FACTS sector with focus on drives improvement.
- d2. Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the field of FACTS systems design and integration.

IV. Alignment of Course Intended Learning Outcomes (CILOs) to Program Intended Learning Outcomes (PILOs)

	CILOs	PILOs
a.	Knowledge and Understanding: Upon successful completion of the Advanced Power Electronics and Drive Course, the graduates will be able to:	A. Knowledge and Understanding: Upon successful completion of the MSc. In Electrical power Engineering Program, the graduates will be able to:
a1.	Demonstrate understanding of the theory and practice of FACTS system operation and design.	A1. Demonstrate in-depth understanding of the theory and practice of modern electrical power systems design and operation and system identification.
a2.	Explain in detail the challenges of sustainable design of STATCM / SSSC systems.	A3. Explain in detail the key considerations and challenges of sustainable design and development of modern electrical power system components.
b. Cog com and	gnitive/ Intellectual Skills: Upon successful apletion of the Advanced Power Electronics Drive Course, the graduates will be able to:	B. Cognitive/ Intellectual Skills: Upon successful completion of the MSc. In Electrical power Engineering Program, the graduates will be able to:
b1.	Solve complex reactive power compensation problems by selecting and applying appropriate tools and techniques.	B1. Identify, formulate, and solve complex power engineering problems by selecting and applying appropriate tools and techniques.
b2.	Progress new ideas to improve the scientific literature in the power systems and drives field.	B2. Critically review the scientific literature for effective justification and support of results and decisions.
c. Pro succ Elec will	fessional and Practical Skills: Upon cessful completion of the Advanced Power etronics and Drive Course, the graduates be able to:	C. Professional and Practical Skills: Upon successful completion of the MSc. In Electrical power Engineering Program, the graduates will be able to:
c1.	Apply modern analysis, design and simulation tools of modern FACTS system. Diagnose other areas of knowledge	C1. Apply modern tools for research, computation, simulation, analysis, and design of modern power systems.C2. Recognize the interdisciplinary nature of
	jointly with other professions to arrive at a	technical problems and apply other areas of knowledge to the solution, and work

	solution for complex reactive power	with other professions to arrive at a		
	compensation problems.	solution for complex engineering		
	1 1	problems.		
d. Tra	nsferable Skills: Upon successful	D. Transferable Skills: Upon successful		
com	pletion of the Advanced Power Electronics	completion of the MSc. In Electrical		
and	Drive Course, the graduates will be able to:	power Engineering Program, the		
	-	graduates will be able to:		
d1.	Establish leadership, analytical and problem-solving skills appropriate to the power electronics sector with focus on drives improvement.	D1. Demonstrate leadership skills in the workplace, to function professionally in a globally competitive world, and to communicate engineering results effectively.		
d2.	Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the field of power electronics systems design and integration.	D2. Realize the relevance of economics, ethics and teamwork to the profession.		

V. <i>A</i>	V. Alignment of CILOs to Teaching and Assessment Strategies					
a.	Alignment of Knowledge and Under	standing CILOs:				
	Knowledge and Understanding CILOs	Teaching Strategies	Assessment Strategies			
a1.	Demonstrate understanding of the theory and practice of FACTS system operation and design.	e • Lectures, n • Self-Learning Problems/Studies,	Written Exam,Assignments.			
a2.	Explain in detail the challenges of sustainable design of STATCM / SSSC systems.	f• Lectures,C• Active learning.	Written Exam,Assignments			
b.	b. Alignment of Intellectual Skills CILOs:					
	Intellectual Skills CILOs	Teaching Strategies	Assessment Strategies			
b1.	Solve complex reactive power compensation problems by selecting and applying appropriate tools and techniques.	Lectures,Independent Study,Brainstorming.	Survey,Written Exam,Assignments			
b2.	Progress new ideas to improve the scientific literature in the power systems and drives field.	 Lectures, Project Supervision, Self-Learning, Brainstorming, Written Example Assignment 				
c.	Alignment of Professional and Pract	ical Skills CILOs:				
Р	rofessional and Practical Skills CILOs	Teaching Strategies	Assessment Strategies			
c1.	Apply modern analysis, design and simulation tools of modern FACTS system.	 Case Study, Simulation Exercises, Brainstorming, Presentations, 	 Written Research Proposal, Thesis and Publication. 			
c2.	Diagnose other areas of knowledge jointly with other professions to arrive at a solution for complex	 Self-Learning, Case Study, Simulation Exercises, Brainstorming, 	 Written Research Proposal, Thesis and Publication. 			

	reactive power compensation	 Presentations, 	
	problems.		
d	. Alignment of Transferable (Genera	I) Skills CILOs:	
	Transferable (General) Skills CILOs	Teaching Strategies	Assessment Strategies
d1.	Establish leadership, analytical and	 Independent Study, 	 Written Exam,
	problem-solving skills	 Presentation, 	 Written Report.
	appropriate to the FACTS sector	 Publish Research Papers. 	
	with focus on drives		
	improvement.		
d2.	Balance professional and ethical	 Dissertation Defenses and 	 Written Exam,
	responsibilities including	Presentation,	 Assignments,
	contemporary issues and	 Independent Study, 	 Written Report.
	environmental awareness in the	 Presentation, 	
	field of FACTS systems design and	 Brainstorming, 	
	integration.	 Publish Research Papers. 	

VI. Course Content					
1.	Theoretical Aspe	ct			
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs
1	Introduction	 Electrical Transmission Networks Conventional Control Mechanisms Flexible ac Transmission Systems (FACTS) Advances in Power- Electronics Switching Devices Principles and Applications of Semiconductor Switches 	1	3	a1,a2
2	Reactive- Power Control in Electrical Power Transmission Systems	 Reactive Power Uncompensated Transmission Lines Passive Compensation Shunt Compensation Series Compensation Effect on Power- Transfer Capacity 	1	3	b1,b2
3	Principles of Conventional Reactive- Power Compensators	 Synchronous Condensers The Saturated Reactor (SR) The Thyristor- Controlled Reactor (TCR) The Thyristor- Controlled Transformer (TCT). The Fixed Capacitor– Thyristor-Controlled Reactor The Thyristor-Switched Capacitor–Thyristor- Controlled Reactor (TSC–TCR) 	1	3	a1,b1,b2
4	SVC Control Components and Models	 Measurement Systems Current Measurement Power Measurement. 	1	3	a2,b1,b2

		 The Requirements of Measurement Systems The Voltage Regulator Gate-Pulse Generation Modeling of SVC for Power-System Studies 			
5	Concepts of SVC Voltage Control	 Voltage Control Voltage Control by the SVC Advantages of the Slope in the SVC Dynamic Characteristic Influence of the SVC on System Voltage. Design of the SVC Voltage Regulator Effect of Network Resonances on the Controller Response Sensitivity to TCR Operating Point Methods for Improving the Voltage-Controller Response 	1	3	a2,b2,c1,c2,d1
6	SVC Applications	 Increase in Steady-State Power-Transfer Capacity Enhancement of Transient Stability Augmentation of Power-System Damping Torque Contributions of SVC Controllers Design of an SVC PSDC Composite Signals for Damping Control SVC Mitigation of Subsynchronous Resonance (SSR) 	1	3	a1,b1,d1
7	The Thyristor- Controlled Series Capacitor (TCSC)	 Series Compensation The TCSC Controller Operation of the TCSC The TSSC Analysis of the TCSC Capability Characteristics Harmonic Performance Response of the TCSC. 	1	3	c1,c2,d1,d2

		 Modeling of the TCSC An Advanced Transient- Stability Studies Model 			
8	TCSC Applications	 Open-Loop Control Closed-Loop Control Improvement of the System-Stability Limit Enhancement of System Damping Subsynchronous Resonance (SSR) Mitigation Voltage-Collapse Prevention TCSC Installations 	1	3	b1,b2,c1,c2
9	Mid Term Exam	 All Topics 	1	3	a1,a2,b1,b2
10	Coordination of FACTS Controllers	 Controller Interactions SVC–SVC Interaction SVC–HVDC Interaction SVC–TCSC Interaction TCSC–TCSC Interaction 	1	3	a1,a2,b1,c1,d2
11	The STATCOM	 The Principle of Operation The V-I Characteristic Harmonic Performance Steady-State Model SSR Mitigation Dynamic Compensation 	2	6	a2,b2,c1,c2,d1,d2
12	The SSSC	 The Principle of Operation The Control System Applications Power-Flow Control SSR Mitigation 	1	3	a2,b1,c1,c2,d1
13	The UPFC	 The Principle of Operation Applications 	1	3	a1,b2,c1,c2,d1

14	Case Studies	 FACTS for specific applications such as utility, domestic appliance, power system electric vehicle and industrial applications 	1	3	a1,a2,b1,b2,c1,c2,d1,d2
15	Final Exam	 All Topics 	1	3	a1,a2,b1,b2
Number of Weeks /and Contact Hours Per Semester		16	48		

2.	Practical Aspect NA			
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs
1	 None 			
	Number of Weeks /and Contact Hours Per Semester			

3.	Tutorial Aspect:			
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)
1	None			
	Number of Weeks /and Units Per Semester	15	30	

VII. Teaching Strategies:

Lectures,

Self-Learning,

Case Study,

Simulation Exercises,

Brainstorming,

Presentations,

Group/Individual Projects and Studies,

VIII.Assessment Methods of the Course:

Written Exam,

Assignments, including reports and presentations

Written Research Proposal.

IX.	Tasks and Assignments:				
No	Assignments/ Tasks	Individual/ Group	Mark	Week Due	CILOs (symbols)
1	Assignments: Assignment 1: Design and implementation of controlled STATCOM circuits using MATLAB tools Assignment 2: Design and implementation of SSSC circuits using MATLAB tools Assignment 3: Individual search assignments with following presentations	Individual	14	5 th , 10 th , & 12 th	a1, a2, b1, b2, c1, c2, d1, d2
2	Mini/Major Project: Students works and submit their individual & group Projects using Web searching, High- Level Programming and simulation to design and implement FACTSapplications.	Individual/ Group	16	From the 4 th to 14 th	a1, a2, b1, b2, c1, c2, d1, d2
3	Project presentation & Case studies	Individual/ Group	10	Work from the 4 th to 14 th weeks	a2, b1, b2, c1, c2, d1, d2
	Total Score		40	==	

X.	X. Learning Assessment:					
No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment	CILOs	
1	Assignments	4 th to 14 th	40	40%	a1, a2, b1, b2, c1, c2, d1, d2	
3	Midterm Exam	8 th	20	20%	a1, a2, b1, b2	
4	Final Exam (Theoretical)	16 th	40	40%	a1, a2, b1, b2	
Total 100%					===	

XI. Lea	XI. Learning Resources :				
1. Requi	ired Textbook(s) :				
3.	M. H. Rashid, 2014, "Power electronics: circuits, devices, and applications," 4rd edition,				
	Prentice Hall				
4.	R. Mohan Mathur,(2002), ''Thyristor-based FACTS controllers for electrical				
	transmission systems", 3rd Edition, A John Wiley & Sons, INC. Publication.				
2. Essen	tial References:				
5.	Cyril W. Lander, 1993, "Power electronics", 3rd edition, McGraw-Hill.				
6.	B. W. Williams, 1992, Power Electronics, Devices, Drivers, Application and Passive				
	components				

7. Fang Lin Luo, Hong Ye, Muhammad Rashid, "Digital Power Electronics and Applications", 2005, Elsev USA
8. E. Acha, Power Electronics control in Electrical system, 1st , 2002, Newnes
3. Electronic Materials and Web Sites *etc.*5. www.goelectricdrive.com/
6. www.electricmachinery.com/
7. www.goelectricdrive.com/
8. <u>http://www.ece.tamu.edu/~empelab/</u>
Journal :
IEEE Publisher
<u>https://www.ieee.org</u>
Elsevier Publisher
<u>https://www.elsevier.org</u>
Science Direct Publisher
https://www.Sciencedirect.com

و الضوابط والسياسات المتبعة في المقرر Course Policies	`
بعد الرجوع للوائح الحامعة بتم كتابة السياسة العامة للمقار فيما بتعلق بالآتي:	
سياسة حضور الفعاليات التعليمية Class Attendance	1
$\frac{1}{10000000000000000000000000000000000$	1
- يقدم التعاب بحصور 16% من المعاصرات ويحرم في حال هم الوناع بنت. - يقدم أسبتاذ المقدر تقريرا بحضور وغياب الطلاب للقسو وبحرم الطالب من بخول الامتحان في حال تحاوز الغياب 25%	
ويتم اقرار الحرمان من مجلس القسم. ويتم اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
- بسبمح للطالب حضبور المحاضير ة إذا تأخر المدة ربع سباعة لثلاث مرات في الفصيل الدراسي، وإذا تأخر زبادة عن ثلاث	
مرات يحذر شفويا من أستاذ المقرر، وعند عدم الألتزام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
- لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان	
إذا تغيب الطالب عن الامتحان النهائي تُطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
التعيينات والمشاريع Assignments & Projects:	4
 يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها. 	
- إذا تأخر الطالب في تسليم التكليفات ً عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.	
الغش Cheating:	5
- في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب.	
- فيّ حال ثبوت قيام الطالب بالغش او [®] النقل في التكليفات والمشاريّع يحرم من الدرجة المخصصة للتكليف.	
الانتحال Plagiarism:	6
– في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك	
سیاسات آخری Other policies:	7
 أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ 	

Academic Year:

<u>Course Plan (Syllabus)</u>: Automatic Reactive Power Compensation

I. Information about Faculty Member Responsible for the Course:							
Name	Assoc. Prof. Dr. Radwan M. AL Bouthigy	1. Office Hours					
Location & Telephone No.	775284933	SAT SUN MON TUE WE		WED	THU		
E-mail	radwan006@yahoo.com						

II.	II. General information about the course:						
	Course Title	Automatic Reactive Power Compensation					
2.	Course Code and Number	PME5312					
			Credit H	ours	Total		
3.	Credit Hours	Lecture	Seminar/Tutorial	Totai			
		3	3				
4.	Study Level and Semester	Secondmester					
5.	Pre-requisites	Advanced I	Power Electron	nics			
6.	Co –requisite	-					
7.	Program (s) in which the course	MSc. in Ele	ectrical Power	Engineering			
	is offered						
8.	Language of teaching the course	English					
9.	Location of teaching the course	Faculty of Engineering					

II. Course Description:

This course provides advanced concepts on Flexible ac Transmission Systems design, advanced STATCOM architecture and capabilities, as well as, System UPFC design. With growth and advancements in the field of electronics and power system, devices around in real-time are able to reactive power compensation in a better way than one can imagine. The future of FACTS systems lie in the advancement of technologies that enable faster compensation with high interwoven connections between different devices. Course covers, Reactive-Power Control in Electrical Power Transmission Systems, Principles of Conventional Reactive-Power Compensators, SVC Control Components and Models ,Concepts of SVC Voltage Control ,SVC Applications, Thyristor-Controlled Series Capacitor (TCSC) ,TCSC Applications, Coordination of FACTS Controllers , STATCOM, SSSC and UPFC. Throughout course projects & case study works, students develop their skills in MATLAB design and implementation.

IV. Course Intended Learning Outcomes (CILOs):

Upon successful completion of the **Advanced power electronics and drives** course, graduate students will be able to:

- a1. Demonstrate understanding of the theory and practice of FACTS system operation and design .
- a2. Explain in detail the challenges of sustainable design of STATCM / SSSC systems.
- b1. Solve complex reactive power compensation problems by selecting and applying appropriate tools and techniques.
- **b2.** Progress new ideas to improve the scientific literature in the power systems and drives field.
- c1. Apply modern analysis, design and simulation tools of modern FACTS system.
- c2. Diagnose other areas of knowledge jointly with other professions to arrive at a solution for complex reactive power compensation problems.
- d1. Establish leadership, analytical and problem-solving skills appropriate to the FACTS sector with focus on drives improvement.
- d2. Balance professional and ethical responsibilities including contemporary issues and environmental awareness in the field of FACTS systems design and integration.

V. Co	V. Course Content:					
	1. Th	eoretical Aspect:				
Order	Units	Sub Topics		Contact Hours		
1	Introduction	 Electrical Transmission Networks Conventional Control Mechanisms Flexible ac Transmission Systems (FACTS) Advances in Power-Electronics Switching Devices Principles and Applications of Semiconductor Switches 	1	3		
2	Reactive-Power Control in Electrical Power Transmission Systems	 Reactive Power Uncompensated Transmission Lines Passive Compensation Shunt Compensation Series Compensation Effect on Power-Transfer Capacity 	1	3		
3	Principles of Conventional Reactive-Power Compensators	 Synchronous Condensers The Saturated Reactor (SR) The Thyristor-Controlled Reactor (TCR) The Thyristor-Controlled Transformer (TCT). The Fixed Capacitor-Thyristor-Controlled Reactor The Thyristor-Switched Capacitor-Thyristor-Controlled Reactor (TSC-TCR) 	1	3		
4	SVC Control Components and Models	 Measurement Systems Current Measurement Power Measurement. The Requirements of Measurement Systems The Voltage Regulator Gate-Pulse Generation Modeling of SVC for Power-System Studies 	1	3		
5	Concepts of SVC Voltage Control	 Voltage Control Voltage Control by the SVC Advantages of the Slope in the SVC Dynamic Characteristic Influence of the SVC on System Voltage. Design of the SVC Voltage Regulator 	1	3		

		 Effect of Network Resonances on the Controller Response Sensitivity to TCR Operating Point Methods for Improving the Voltage- Controller Response 		
6	SVC Applications	 Increase in Steady-State Power- Transfer Capacity Enhancement of Transient Stability Augmentation of Power-System Damping Torque Contributions of SVC Controllers Design of an SVC PSDC Composite Signals for Damping Control SVC Mitigation of Subsynchronous Resonance (SSR) 	1	3
7	The Thyristor- Controlled Series Capacitor (TCSC)	 Series Compensation The TCSC Controller Operation of the TCSC The TSSC Analysis of the TCSC Capability Characteristics Harmonic Performance Response of the TCSC. Modeling of the TCSC An Advanced Transient-Stability Studies Model 	1	3
8	TCSC Applications	 Open-Loop Control Closed-Loop Control Improvement of the System-Stability Limit Enhancement of System Damping Subsynchronous Resonance (SSR) Mitigation Voltage-Collapse Prevention TCSC Installations 	1	3
9	Mid Term Exam	All Topics	1	3
10	Coordination of FACTS Controllers	 Controller Interactions SVC–SVC Interaction SVC–HVDC Interaction SVC–TCSC Interaction TCSC–TCSC Interaction 	1	3
11	The STATCOM	 The Principle of Operation The V-I Characteristic Harmonic Performance 	2	6

		 Steady-State Model SSR Mitigation Dynamic Compensation 			
12	The SSSC	 The Principle of Operation The Control System Applications Power-Flow Control SSR Mitigation 	1	3	
13	The UPFC	The Principle of OperationApplications	1	3	
14	Case Studies	 FACTS for specific applications such as utility, domestic appliance, power system electric vehicle and industrial applications 	1	3	
15	Final Exam	All Topics	1	3	
	Number of Weeks /and Contact Hours Per Semester1648				

	2. Practical Aspect				
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs	
1	 None 				
	Number of Weeks /and Contact Hours Per Semester				

3	3. Training/ Tutorials/ Exercises Aspects:					
Order	OrderTutorials/ ExercisesWeek DueContact Hours					
1	 None 					
Numb	Number of Weeks /and Contact Hours Per Semester					

I. Tea	hing Strategies:
Lectur	s,
Self-L	arning,
Case S	udy,
Simula	ion Exercises,
Brains	orming,
Presen	ations,
Group	ndividual Projects and Studies,

VII.Assessment Methods of the Course:

Written Exam,

Assignments, including reports and presentations

Written Research Proposal.

VIII. Tasks and Assignments:					
No	Assignments	Individual /Groups	Mark	Week Due	
1	Assignments: Assignment 1: Design and implementation of STATCOM circuits using MATLAB tools Assignment 2: Design and implementation of SSSC circuits using MATLAB tools Assignment 3: Individual search assignments with following presentations	Individual	14	5 th , 10 th , & 12 th	
2	Mini/Major Project: Graduates works and submit their individual & group Projects using Web searching, High-Level Programming and simulation to design and implement FACTS applications. Project presentation & Case studies	Individual/ Group Individual/	16	From the 4 th to 14 th Work from the 4 th	
	Total Score	Group	40	to 14 th weeks	

D	IX. Learning Assessment:					
No	Assessment Method	Week Due	Mark	Proportion of Final Assessment %		
1	Assignments	4 th to 14 th	40	40%		
3	Midterm Exam	8 th	20	20%		
4	Final Exam (Theoretical)	16 th	40	40%		
	Total المجموع			100 %		

TY T	· D			
X. L	earning Resources:			
	1. Required Textbook(s):			
1.	. M. H. Rashid, 2014, "Power electronics: circuits, devices, and applications," 4rd editi			
	Prentice Hall			
2.	R. Mohan Mathur, (2002), ''Thyristor-based FACTS controllers for electrical			
	transmission systems", 3rd Edition, A John Wiley & Sons, INC. Publication.			
2.	Essential References:			
1.	Cyril W. Lander, 1993, "Power electronics", 3rd edition, McGraw-Hill.			
2.	B. W. Williams, 1992, Power Electronics, Devices, Drivers, Application and Passive			
	components			
3.	Fang Lin Luo, Hong Ye, Muhammad Rashid, "Digital Power Electronics and			
	Applications", 2005, Elsev USA			
4.	E. Acha, Power Electronics control in Electrical system, 1st, 2002, Newnes			
3.	Electronic Materials and Web Sites etc.			
1.	www.goelectricdrive.com/			
2.	www.electricmachinery.com/			
3.	www.goelectricdrive.com/			
4.	http://www.ece.tamu.edu/~empelab/			
I annual a				
Journal :	IFFF Publisher			
	https://www.jeee.org			
	Elsevier Publisher			
	https://www.elsevier.org			
	Science Direct Publisher			
	https://www.Sciencedirect.com			

• الضوابط والسياسات المتبعة في المقرر Course Policies	•			
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتى:				
سياسة حضور الفعاليات التعليمية Class Attendance <u>:</u>	1			
- يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك.				
 يقدم أسـتاذ المقرر تقريرا بحضـور وغياب الطلاب للقسـم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% 				
ويتم اقرار الحرمان من مجلس القسم.				
الحضور المتأخر Tardy:	2			
 يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث 				
مرات يحدّر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.				
ضوابط الامتحان Exam Attendance/Punctuality:	3			
- لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان				
- إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية. - إذا تعديب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية.				
التعيينات والمشاريع Assignments & Projects:	4			
 يحدد استاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها. 				
- إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجه التكليف الذي تأخر في تسليمه. الدون				
الغش Cheating:	5			
 في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب. 				
- في حال تبوت فيام الطالب بالغس أو النقل في التكليفات والمساريع يحرم من الدرجة المخصصة للتكليف. المحمد الم				
الانتحال Plagiarism:	6			
– في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك				
سیاسات أخری Other policies:	7			
 أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ 				

