### 10- Course Specification of: Electrical Power Quality Course Code (PME549)

|     | I. General Information About the Course: |                                |                 |                       |       |  |  |
|-----|------------------------------------------|--------------------------------|-----------------|-----------------------|-------|--|--|
| 1.  | Course Title:                            |                                | Electric        | al Power Quality      |       |  |  |
| 2.  | Course Code and Number:                  | PME549                         |                 |                       |       |  |  |
|     |                                          |                                | Credit          | Hours                 | Total |  |  |
| 3.  | Credit Hours:                            | Lecture                        | Practical       | Seminar/Tutorial      | Total |  |  |
|     |                                          | 3                              | -               | -                     | 3     |  |  |
| 4.  | Study Level and Semester:                |                                | 2 <sup>nc</sup> | <sup>1</sup> Semester |       |  |  |
| 5.  | Pre-requisites (if any):                 | Power Electronics, Renewable E |                 |                       |       |  |  |
|     |                                          | Technologies.                  |                 |                       |       |  |  |
| 6.  | Co-requisites (if any):                  | None                           |                 |                       |       |  |  |
| 7.  | Program (s) in which the course is       | MSc. in E                      | Electrical Po   | wer Engineering Pr    | ogram |  |  |
| 8   | I anguage of teaching the course:        | English                        |                 |                       |       |  |  |
| 9   | Study System.                            | Courses &                      | & Thesis        |                       |       |  |  |
| 10  | Prenared Rv.                             | Dr Adel                        | Ahmed Al-9      | Shakiri               |       |  |  |
| 1   | Reviewed by:                             | Prof Dr. Omar Hassan Al-Sakaf  |                 |                       |       |  |  |
| 12. | Date of Approval:                        |                                |                 |                       |       |  |  |

#### **II. Course Description:**

Both electric utilities and end users of electric power are becoming increasingly concerned about the quality of electric power. Newer-generation load equipment, with microprocessor-based controls and power electronic devices, is more sensitive to power quality variations than was equipment used in the past. The increasing emphasis on overall power system efficiency has resulted in continued growth in the application of devices such as high-efficiency, adjustable-speed motor drives and shunt capacitors for power factor correction to reduce losses. This is resulting in increasing harmonic levels on power systems.

This course provides an introduction to power quality and harmonics phenomena in electric power systems. It covers topics such as voltage sags, electrical transients, harmonics, mitigation techniques, and standards of power quality and harmonics.

#### **III. Course Intended Learning Outcomes (CILOs):**

Upon successful completion of Electrical Power Quality Course, the graduates will be able to:

- al Understand issues on power quality phenomena, classifications, measuring and monitoring methods and mitigation techniques.
- a2 Recognize the effects of power quality in modern power systems in the supply and demand side.
- a3 Define the problems and factors dealing with power quality issues.
- b1 Evaluate parameters of the equipment needed to diagnose power in order to determine quality and the presence of harmonics.
- b2- Analyze the power quality characteristics to select the suitable components for a better power quality.
- c1- Apply specialist technical tools to determine power quality and harmonics in a variety of contexts.

- c2- Develop specialist practices to ensure efficiency in both transmission and distribution of quality power.
- c3 Compare different standards and safety codes related to calculation of power quality parameters.
- d1- Acquire new advanced knowledge related to power quality and power system in general.
- d2 Demonstrate, independently and in groups, the ability to plan, organize and implement a power quality project based on a problem of relevance to efficiency of power system.

### IV. Alignment of Course Intended Learning Outcomes (CILOs) to Program Intended Learning Outcomes (PILOs)

|        | CILOs                                                       | PILOs                                                  |  |  |
|--------|-------------------------------------------------------------|--------------------------------------------------------|--|--|
| a.     | Knowledge and Understanding: Upon                           | A. Knowledge and Understanding:                        |  |  |
|        | successful completion of the Electrical                     | Upon successful completion of the                      |  |  |
|        | Power Quality Course, the graduates will                    | MSc. in Electrical Power                               |  |  |
|        | be able to:                                                 | Engineering Program, the graduates will be able to:    |  |  |
| a1.    | Understand issues on power quality                          | A1. Demonstrate in-depth understanding of              |  |  |
|        | phenomena, classifications, measuring                       | the theory and practice of modern                      |  |  |
|        | and monitoring methods and mitigation                       | electrical power systems design and                    |  |  |
|        | techniques.                                                 | operation and system identification.                   |  |  |
| a2.    | Recognize the effects of power quality in                   | A2. Recognize and comprehend the key role              |  |  |
|        | modern power systems in the supply and                      | of sustainable energy for national and global          |  |  |
|        | demand side.                                                | sustainable development.                               |  |  |
|        |                                                             |                                                        |  |  |
| a3.    | Define the problems and factors dealing                     | A3. Explain in detail the key considerations           |  |  |
|        | with power quality issues. and challenges of sustainable de |                                                        |  |  |
|        |                                                             | development of modern electrical power                 |  |  |
|        |                                                             | system components.                                     |  |  |
| b. Cog | nitive/ Intellectual Skills: Upon successful                | B. Cognitive/ Intellectual Skills: Upon                |  |  |
| com    | pletion of the Electrical Power Quality                     | successful completion of the MSc. in                   |  |  |
| Cou    | <b>rse</b> , the graduates will be able to:                 | Electrical Power Engineering Program,                  |  |  |
|        | 1                                                           | the graduates will be able to:                         |  |  |
| b1.    | Evaluate parameters of the equipment                        | <b>B1.</b> Identify and apply specialized knowledge    |  |  |
|        | needed to diagnose power in order to                        | and skills to solve problems that are                  |  |  |
|        | determine quality and the presence of                       | business.                                              |  |  |
|        | harmonics.                                                  |                                                        |  |  |
| b2.    | Analyze the power quality characteristics                   | <b>B2.</b> Critically review the scientific literature |  |  |
|        | to select the suitable components for a                     | results and decisions                                  |  |  |
| D      | better power quality.                                       |                                                        |  |  |
| c. Pro | ressional and Practical Skills: Upon                        | C. Professional and Practical Skills: Upon             |  |  |
| succ   | essitul completion of the Electrical Power                  | successful completion of the MSc. in                   |  |  |
| Qua    | <b>Inty Course,</b> the graduates will be able to:          | Electrical Power Engineering Program,                  |  |  |
|        |                                                             | the graduates will be able to:                         |  |  |

| 1 1    |                                                                                                                 |                                                                                                                                                                                                                       |
|--------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cl.    | Apply specialist technical tools to                                                                             | C1. Apply modern tools for research,                                                                                                                                                                                  |
|        | determine power quality and harmonics in                                                                        | computation, simulation, analysis, and                                                                                                                                                                                |
|        | a variety of contexts.                                                                                          | design of modern power systems                                                                                                                                                                                        |
| c2.    | Develop specialist practices to ensure<br>efficiency in both transmission and<br>distribution of quality power. | <b>C2.</b> Recognize the interdisciplinary nature of technical problems and apply other areas of knowledge to the solution, and work with other professions to arrive at a solution for complex engineering problems. |
| c3.    | Compare different standards and safety codes related to calculation of power quality parameters.                | C3 Employ design standards and safety<br>codes as an integral part of the design and<br>building process for machine parts and<br>systems.                                                                            |
| d. Tra | nsferable Skills: Upon successful                                                                               | D. Transferable Skills: Upon successful                                                                                                                                                                               |
| com    | pletion of the Electrical Power Ouality                                                                         | completion of the MSc. in Electrical                                                                                                                                                                                  |
| Соц    | <b>rse.</b> the graduates will be able to:                                                                      | Power Engineering Program. the                                                                                                                                                                                        |
| 0.00   | iso, the graduates will be dole to:                                                                             | Tower Engineering Trogram, and                                                                                                                                                                                        |
|        |                                                                                                                 | graduates will be able to:                                                                                                                                                                                            |
| d1.    | Acquire new advanced knowledge related<br>to power quality and power system in<br>general                       | graduates will be able to:<br>D1. Demonstrate leadership skills in the<br>workplace, to function professionally in a<br>globally competitive world, and to<br>communicate engineering results<br>effectively          |

| V. Alignment of CILOs to Teaching and Assessment Strategies |                                                                                                                                     |                                                                                                 |                                                                                      |  |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| a.                                                          | Alignment of Knowledge and Underst                                                                                                  | tanding CILOs:                                                                                  |                                                                                      |  |  |
|                                                             | Knowledge and Understanding CILOs                                                                                                   | Teaching Strategies A                                                                           | ssessment Strategies                                                                 |  |  |
| a1.                                                         | Understand issues on power quality<br>phenomena, classifications, measuring<br>and monitoring methods and mitigation<br>techniques. | <ul><li>Lectures,</li><li>Self-Learning</li></ul>                                               | Written Exam,                                                                        |  |  |
| a2.                                                         | Recognize the effects of power quality<br>in modern power systems in the supply<br>and demand side.                                 | <ul> <li>Lectures,</li> <li>Seminars,</li> <li>Self-Learning<br/>Problems/Studies,</li> </ul>   | Written Exam,<br>Assignments                                                         |  |  |
| a3.                                                         | Define the problems and factors dealing with power quality issues.                                                                  | <ul> <li>Lectures,</li> <li>Case study,</li> </ul>                                              | Written Exam,<br>Assignments                                                         |  |  |
| b.                                                          | Alignment of Intellectual Skills CILO                                                                                               | s:                                                                                              |                                                                                      |  |  |
|                                                             | Intellectual Skills CILOs                                                                                                           | <b>Teaching Strategies</b>                                                                      | Assessment Strategies                                                                |  |  |
| b1.                                                         | Evaluate parameters of the equipment<br>needed to diagnose power in order to<br>determine quality and the presence of<br>harmonics. | <ul><li>Lectures,</li><li>Simulation Exercises,</li><li>Analysis and Problem Solving,</li></ul> | <ul><li>Reports,</li><li>Survey,</li><li>Written Exam,</li><li>Assignments</li></ul> |  |  |

| b2. | Analyze the power quality<br>characteristics to select the suitable<br>components for a better power quality                                                                                 | <ul> <li>Reports,</li> <li>Survey,</li> <li>Written Exam,</li> <li>Assignments</li> </ul>                                                                     |                                                                                                                                          |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| F   | Professional and Practical Skills CILOs                                                                                                                                                      | Teaching Strategies                                                                                                                                           | Assessment Strategies                                                                                                                    |
| c1. | Apply specialist technical tools to<br>determine power quality and<br>harmonics in a variety of contexts.                                                                                    | <ul> <li>Lectures,</li> <li>Case Study,</li> <li>Simulation Exercises,</li> </ul>                                                                             | <ul> <li>Written Research<br/>Proposal,</li> </ul>                                                                                       |
| c2. | Develop specialist practices to ensure<br>efficiency in both transmission and<br>distribution of quality power.                                                                              | <ul><li>Lectures,</li><li>Case Study,</li><li>Simulation Exercises,</li></ul>                                                                                 | <ul> <li>Written Research<br/>Proposal</li> </ul>                                                                                        |
| c3. | Compare different standards and<br>safety codes related to calculation<br>power quality parameters.                                                                                          | <ul> <li>Lectures,</li> <li>Case Study,</li> <li>Analysis and Problem Solving,</li> </ul>                                                                     | <ul> <li>Seminar Report,</li> <li>Written Research<br/>Proposal,</li> </ul>                                                              |
| d   | . Alignment of Transferable (Genera                                                                                                                                                          | l) Skills CILOs:                                                                                                                                              |                                                                                                                                          |
|     | Transferable (General) Skills CILOs                                                                                                                                                          | Teaching Strategies                                                                                                                                           | Assessment Strategies                                                                                                                    |
| d1. | Acquire new advanced knowledge<br>related to power quality and power<br>system in general                                                                                                    | <ul> <li>Dissertation Defenses and<br/>Presentation,</li> <li>Independent Study,</li> <li>Presenting Researches,</li> <li>Publish Research Papers.</li> </ul> | <ul> <li>Written Research<br/>Proposal</li> <li>Written Exam,</li> <li>Assignments,</li> <li>Survey,</li> <li>Written Report.</li> </ul> |
| d2. | Demonstrate, independently and in<br>groups, the ability to plan, organize<br>and implement a power quality-<br>project based on a problem of<br>relevance to efficiency of power<br>system. | <ul> <li>Dissertation Defenses and<br/>Presentation,</li> <li>Independent Study,</li> <li>Presenting Researches,</li> <li>Publish Research Papers.</li> </ul> | <ul> <li>Written Research<br/>Proposal</li> <li>Assignments,</li> <li>Written Report.</li> </ul>                                         |

| VI. Course Content |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                  |                                                    |  |  |
|--------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|----------------------------------------------------|--|--|
| 1.                 | Theoretical Aspec                                                         | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                  |                                                    |  |  |
| Order              | Topic List /<br>Units                                                     | Sub -Topics List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Number<br>of Weeks | Contact<br>Hours | Course<br>ILOs                                     |  |  |
| 1                  | Introduction:<br>Power Quality<br>Terms,<br>Definitions and<br>Standards. | <ul> <li>What's Power Quality?</li> <li>Power Quality-Voltage Quality</li> <li>Why we are concerned about Power Quality.</li> <li>The Power Quality evaluation procedure</li> <li>General classes of power quality problems.</li> <li>Transients.</li> <li>Long duration voltage variations.</li> <li>Short-duration voltage variations.</li> <li>Voltage imbalance</li> <li>Waveform distortion, voltage fluctuations,</li> <li>Power frequency variations, power quality standards and terms.</li> </ul> | 1                  | 3                | a.1, a.2,<br>b.1, b.2                              |  |  |
| 2                  | Voltage Sags<br>and Interruption                                          | <ul> <li>Sources of Sags and Interruptions</li> <li>Estimating Voltage Sag Performance</li> <li>Fundamental Principles of Protection</li> <li>Solutions at the End-User Level</li> <li>Motor-Starting Sags</li> <li>Utility System Fault-Clearing Issues</li> </ul>                                                                                                                                                                                                                                        | 2                  | 6                | a.1, a.2,<br>b.1,<br>b.2, c.1,<br>c.2, d.1,<br>d.2 |  |  |
| 3                  | Transient<br>Overvoltages.                                                | <ul> <li>Sources of Transient Overvoltages</li> <li>Principles of Overvoltage Protection</li> <li>Devices for Overvoltage Protection</li> <li>Utility Capacitor-Switching Transients</li> <li>Utility System Lightning Protection</li> <li>Managing Ferroresonance</li> <li>Switching Transient Problems with Loads</li> <li>Computer Tools for Transients Analysis</li> </ul>                                                                                                                             | 2                  | 6                | a.1, a.2,<br>b.1, b.2,<br>c.1, c.2,<br>d.1, d.2    |  |  |
| 4                  | Fundamentals<br>of Harmonics.                                             | <ul> <li>Harmonic Distortion</li> <li>Voltage versus Current Distortion</li> <li>Harmonics versus Transients</li> <li>Harmonic Indexes</li> <li>Harmonic Sources from Commercial Loads</li> <li>Harmonic Sources from Industrial Loads</li> <li>Locating Harmonic Sources</li> <li>System Response Characteristics</li> <li>Effects of Harmonic Distortion</li> <li>Interharmonics</li> </ul>                                                                                                              |                    | 6                | a.1, a.2,<br>b.1, b.2,<br>c.1, c.2,<br>d.1, d.2    |  |  |
|                    |                                                                           | Mid-Term Exam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  | 3                | All                                                |  |  |

|    |                                                                                                                                                                                                                                                                                                                         | <ul> <li>Harmonic Distortion Evaluations</li> <li>Principles for Controlling Harmonics</li> </ul>                                                                                                                                                                                                                      |    |    |                                                      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|------------------------------------------------------|
| 5  | Applied<br>Harmonics                                                                                                                                                                                                                                                                                                    | <ul> <li>Where to Control Harmonics</li> <li>Harmonic Studies</li> <li>Devices for Controlling Harmonic<br/>Distortion</li> <li>Harmonic Filter Design: A Case Study</li> <li>Case Studies</li> <li>Standards of Harmonics</li> </ul>                                                                                  | 1  | 3  | a.1, a.2,<br>b.1, b.2,<br>c.1, c.2,<br>d.1, d.2      |
| 6  | Long Duration<br>Voltage<br>Variations.                                                                                                                                                                                                                                                                                 | <ul> <li>Principles of Regulating the Voltage</li> <li>Devices for Voltage Regulation</li> <li>Utility Voltage Regulator Application</li> <li>Capacitors for Voltage Regulation</li> <li>End-User Capacitor Application</li> <li>Regulating Utility Voltage with Distributed<br/>Resources</li> <li>Flicker</li> </ul> | 1  | 3  | a.1, a.2,<br>b.1,<br>b.2, ,<br>c.1, c.2,<br>d.1, d.2 |
| 7  | Power Quality<br>Benchmarking                                                                                                                                                                                                                                                                                           | <ul> <li>Benchmarking Process</li> <li>RMS Voltage Variation Indices</li> <li>Harmonics Indices</li> <li>Power Quality Contracts</li> <li>Power Quality Insurance</li> <li>Power Quality State Estimation</li> <li>Including Power Quality in Distribution<br/>Planning</li> </ul>                                     | 1  | 3  | a.1, a.2,<br>b.1,<br>b.2, c.1,<br>c.2, d.1,<br>d.2   |
| 8  | Distributed<br>Generation DG<br>and Power<br>Quality                                                                                                                                                                                                                                                                    | <ul> <li>Resurgence of DG</li> <li>DG Technologies</li> <li>Interface to the Utility System</li> <li>Power Quality Issues</li> <li>Operating Conflicts</li> <li>DG on Distribution Networks</li> <li>Siting DG Distributed Generation</li> <li>Interconnection Standards</li> </ul>                                    | 2  | 6  | a.1, a.2,<br>b.1,<br>b.2, c.1,<br>c.2, d.1,<br>d.2   |
| 9  | Wiring and<br>Grounding                                                                                                                                                                                                                                                                                                 | <ul> <li>Resources</li> <li>Definitions</li> <li>Reasons for Grounding</li> <li>Typical Wiring and Grounding Problems</li> <li>Solutions to Wiring and Grounding Problems</li> </ul>                                                                                                                                   | 1  | 3  | a.1, a.2,<br>b.1,<br>b.2, c.1,<br>c.2, d.1,<br>d.2   |
| 10 | <ul> <li>Monitoring Considerations</li> <li>Historical Perspective of Power Quality<br/>Measuring Instruments</li> <li>Power Quality Measurement Equipment</li> <li>Assessment of Power Quality<br/>Measurement Data</li> <li>Application of Intelligent Systems</li> <li>Power Quality Monitoring Standards</li> </ul> |                                                                                                                                                                                                                                                                                                                        | 1  | 3  | a.1, a.2,<br>b.1,<br>b.2, c.1,<br>c.2, d.1,<br>d.2   |
|    |                                                                                                                                                                                                                                                                                                                         | Final Exam                                                                                                                                                                                                                                                                                                             | 1  | 3  | All                                                  |
|    | Number of Wee                                                                                                                                                                                                                                                                                                           | ks /and Contact Hours Per Semester                                                                                                                                                                                                                                                                                     | 16 | 48 |                                                      |

| 2.    | Practical Aspect NA                             |                    |                  |             |
|-------|-------------------------------------------------|--------------------|------------------|-------------|
| Order | Practical / Tutorials topics                    | Number<br>of Weeks | Contact<br>Hours | Course ILOs |
| 1     | •                                               |                    |                  |             |
| 2     | •                                               |                    |                  |             |
|       | Number of Weeks /and Contact Hours Per Semester |                    |                  |             |

| 3.  | <b>Tutorial Aspect:</b> | N        | A |                    |                  |                                          |
|-----|-------------------------|----------|---|--------------------|------------------|------------------------------------------|
| No. |                         | Tutorial |   | Number of<br>Weeks | Contact<br>Hours | Learning<br>Outcomes<br>( <u>C</u> ILOs) |
|     |                         |          |   |                    |                  |                                          |
|     |                         |          |   |                    |                  |                                          |
|     |                         |          |   |                    |                  |                                          |

## VII. Teaching Strategies:

- Lectures,
- Seminars,
- Self-Learning
- Presentations,
- Case studies
- Analysis and Problem Solving,
- Simulation Exercises

## VIII. Assessment Methods of the Course:

- Assignments
- Reports,
- Written Exams.

| IX | IX.Tasks and Assignments: |                      |      |                       |                           |  |  |
|----|---------------------------|----------------------|------|-----------------------|---------------------------|--|--|
| No | Assignments/ Tasks        | Individual/<br>Group | Mark | Week<br>Due           | CILOs<br>(symbols)        |  |  |
| 1  | Research work             | Individual           | 10   | 3. 5, 7, 9            | a1, a2, b1,<br>b2, d1, d2 |  |  |
| 2  | Mini-Project              | Group                | 10   | 11                    | a1, a2, b1,<br>b2, d1, d2 |  |  |
| 3  | Case studies              | Group                | 5    | 6, 8                  | a1, a2, b1,<br>b2, d1, d2 |  |  |
| 4  | Presentations             | Individual           | 5    | 2, 4, 6, 8,<br>10, 12 | a1, a2, b1,<br>b2, d1, d2 |  |  |
|    | Total Score               |                      |      | ==                    |                           |  |  |

| <b>X.</b> | X. Learning Assessment: |             |      |                                   |                               |  |  |
|-----------|-------------------------|-------------|------|-----------------------------------|-------------------------------|--|--|
| No.       | Assessment Tasks        | Week<br>due | Mark | Proportion of<br>Final Assessment | CILOs                         |  |  |
| 1         | Tasks and Assignments   | 3,4,5,6     | 30   | 20%                               | a1, a2, b1, b2,<br>d1, d2     |  |  |
| 2         | Quizzes                 | 7,9,11,13   | 15   | 10%                               | a1, a2, b1, b2,<br>c1, c2, c3 |  |  |
| 3         | Midterm Exam            | 8           | 30   | 20%                               | All                           |  |  |

| 5     | Final Exam (Theoretical) | 16  | 75   | 50% | All |
|-------|--------------------------|-----|------|-----|-----|
| Total |                          | 150 | 100% | === |     |

| XI. Lea | XI. Learning Resources :                                                                       |  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------|--|--|--|--|--|
|         |                                                                                                |  |  |  |  |  |
|         | 1. Required Textbook(s):                                                                       |  |  |  |  |  |
| 1.      | Dugan Roger C, McGranaghan M F, Santoso S and Beaty H Wayne, Electrical Power Systems          |  |  |  |  |  |
|         | Quality, 3 <sup>rd</sup> edition, McGraw-Hill, 2012.                                           |  |  |  |  |  |
| 2.      | C. Sankaran, Power Quality, CRC Press LLC 2002.                                                |  |  |  |  |  |
|         | 2. Essential References:                                                                       |  |  |  |  |  |
| 1.      | Alexander Kusko, Marc T. Thompson, Power Quality in Electrical Systems, McGraw-<br>Hill, 2007. |  |  |  |  |  |
| 2.      | Barry W. Kennedy, Power Quality Primer, McGraw-Hill, 2000.                                     |  |  |  |  |  |
|         | 3. Electronic Materials and Web Sites etc.                                                     |  |  |  |  |  |
| 1.      | Course Power Point.                                                                            |  |  |  |  |  |
| 2.      | Video clips.                                                                                   |  |  |  |  |  |
| 3.      | Links to information resources.                                                                |  |  |  |  |  |

| • الصوابط والسياسات المنبغة في المغرر Course Policies                                                                        |   |
|------------------------------------------------------------------------------------------------------------------------------|---|
| بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:                                                 |   |
| سياسة حضور الفعاليات التعليمية Class Attendance:                                                                             | 1 |
| <ul> <li>يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك.</li> </ul>                                        |   |
| <ul> <li>يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسّم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25%</li> </ul> |   |
| ويتم اقرار الحرمان من مجلس القسم.                                                                                            |   |
| الحضور المتأخر Tardy:                                                                                                        | 2 |
| <ul> <li>يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث</li> </ul>    |   |
| مرات يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.                                                    |   |
| ضوابط الامتحان Exam Attendance/Punctuality:                                                                                  | 3 |
| <ul> <li>لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان</li> </ul>                           |   |
| <ul> <li>إذا تغيب الطالب عن الامتحان النهائي تُطبق اللوائح الخاصة بنظام الامتحان في الكلية.</li> </ul>                       |   |
| التعيينات والمشاريع Assignments & Projects:                                                                                  | 4 |
| ـ يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها.                       |   |
| – إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.                              |   |
| الغش Cheating:                                                                                                               | 5 |
| ـ في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب.                                   |   |
| <ul> <li>- في حال تُبوت قيام الطالب بالغش أو النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.</li> </ul>         |   |
| الانتحال Plagiarism:                                                                                                         | 6 |
| – في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك                                        |   |
| سیاسات آخری Other policies:                                                                                                  | 7 |
| <ul> <li>أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ</li> </ul>                                        |   |

### **<u>Course Plan (Syllabus</u>): Electrical Power Quality**

| I. Information about Faculty Member Responsible for the Course: |                                      |     |     |     |     |     |     |
|-----------------------------------------------------------------|--------------------------------------|-----|-----|-----|-----|-----|-----|
| Name Dr. AdelAl-Shakiri Office Hours                            |                                      |     |     |     |     |     |     |
| Location & Telephone No.                                        | Faculty of Engineering,<br>772771672 | SAT | SUN | MON | TUE | WED | THU |
| E-mail                                                          | ashakiri62@gmail.com                 |     |     |     |     |     |     |

| II. | . General information about the course:       |                                              |                                 |                      |            |  |  |  |
|-----|-----------------------------------------------|----------------------------------------------|---------------------------------|----------------------|------------|--|--|--|
| 1.  | <b>Course Title</b>                           |                                              | <b>Electrical Power Quality</b> |                      |            |  |  |  |
| 2.  | <b>Course Code and Number</b>                 |                                              | F                               | PME549               |            |  |  |  |
|     |                                               |                                              | Credit H                        | ours                 | Total      |  |  |  |
| 3.  | Credit Hours                                  | Lecture                                      | Practical                       | Seminar/Tutorial     | Total      |  |  |  |
|     |                                               | 3                                            | -                               | -                    | 3          |  |  |  |
| 4.  | <b>Study Level and Semester</b>               |                                              | 2 <sup>nd</sup>                 | Semester             |            |  |  |  |
| 5.  | Pre-requisites                                | Power B                                      | Electronics, Re                 | enewable Energy Tech | hnologies. |  |  |  |
| 6.  | Co –requisite                                 | None                                         |                                 |                      |            |  |  |  |
| 7.  | Program (s) in which the course<br>is offered | MSc. In Electrical Power Engineering Program |                                 |                      |            |  |  |  |
| 8.  | Language of teaching the course               | English                                      |                                 |                      |            |  |  |  |
| 9.  | Location of teaching the course               | Electrical Engineering Department            |                                 |                      |            |  |  |  |

#### **III.Course Description:**

Both electric utilities and end users of electric power are becoming increasingly concerned about the quality of electric power. Newer-generation load equipment, with microprocessor-based controls and power electronic devices, is more sensitive to power quality variations than was equipment used in the past. The increasing emphasis on overall power system efficiency has resulted in continued growth in the application of devices such as high-efficiency, adjustable-speed motor drives and shunt capacitors for power factor correction to reduce losses. This is resulting in increasing harmonic levels on power systems.

This course provides an introduction to power quality and harmonics phenomena in electric power systems. It covers topics such as voltage sags, electrical transients, harmonics, mitigation techniques, and standards of power quality and harmonics.

#### **IV. Course Intended Learning Outcomes (CILOs):**

Upon successful completion of Electrical Power Quality Course, the graduates will be able to:

- a1 Understand issues on power quality phenomena, classifications, measuring and monitoring methods and mitigation techniques.
- a2 Recognize the effects of power quality in modern power systems in the supply and demand side.
- a3 Define the problems and factors dealing with power quality issues.

- b1 Evaluate parameters of the equipment needed to diagnose power in order to determine quality and the presence of harmonics.
- b2- Analyze the power quality characteristics to select the suitable components for a better power quality.
- c1- Apply specialist technical tools to determine power quality and harmonics in a variety of contexts.
- c2- Develop specialist practices to ensure efficiency in both transmission and distribution of quality power.
- c3 Compare different standards and safety codes related to calculation of power quality parameters.
- d1- Able to acquire new advanced knowledge related to power quality and power system in general.
- d2 Demonstrate, independently and in groups, the ability to plan, organize and implement a power quality project based on a problem of relevance to efficiency of power system.

| V. Co | ourse Content:                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                  |
|-------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|
|       | • Th                                                                   | eoretical Aspect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  |
| Order | Units                                                                  | Sub Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Week<br>Due | Contact<br>Hours |
| 1     | Introduction: Power<br>Quality Terms,<br>Definitions and<br>Standards. | <ul> <li>What's Power Quality?</li> <li>Power Quality-Voltage Quality</li> <li>Why we are concerned about Power Quality.</li> <li>The Power Quality evaluation procedure</li> <li>General classes of power quality problems.</li> <li>Transients.</li> <li>Long duration voltage variations.</li> <li>Short-duration voltage variations.</li> <li>Voltage imbalance</li> <li>Waveform distortion, voltage fluctuations,</li> <li>Power frequency variations, power quality standards and terms.</li> </ul> | 1           | 3                |
| 2     | Voltage Sags and<br>Interruption                                       | <ul> <li>Sources of Sags and Interruptions</li> <li>Estimating Voltage Sag Performance</li> <li>Fundamental Principles of Protection</li> <li>Solutions at the End-User Level</li> <li>Motor-Starting Sags</li> <li>Utility System Fault-Clearing Issues</li> </ul>                                                                                                                                                                                                                                        | 2,3         | 6                |
| 3     | Transient<br>Overvoltages.                                             | <ul> <li>Sources of Transient Overvoltages</li> <li>Principles of Overvoltage Protection</li> <li>Devices for Overvoltage Protection</li> <li>Utility Capacitor-Switching Transients</li> <li>Utility System Lightning Protection</li> <li>Managing Ferroresonance</li> <li>Switching Transient Problems with Loads</li> <li>Computer Tools for Transients Analysis</li> </ul>                                                                                                                             | 4,5         | 6                |
| 4     | Fundamentals of<br>Harmonics.                                          | <ul> <li>Harmonic Distortion</li> <li>Voltage versus Current Distortion</li> <li>Harmonics versus Transients</li> <li>Harmonic Indexes</li> <li>Harmonic Sources from Commercial Loads</li> <li>Harmonic Sources from Industrial Loads</li> <li>Locating Harmonic Sources</li> <li>System Response Characteristics</li> <li>Effects of Harmonic Distortion</li> <li>Interharmonics</li> </ul>                                                                                                              | 6,7         | 6                |
|       |                                                                        | Mid-Term Exam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8           | 3                |
| 5     | Applied Harmonics                                                      | <ul> <li>Harmonic Distortion Evaluations</li> <li>Principles for Controlling Harmonics</li> <li>Where to Control Harmonics</li> <li>Harmonic Studies</li> <li>Devices for Controlling Harmonic<br/>Distortion</li> <li>Harmonic Filter Design: A Case Study</li> </ul>                                                                                                                                                                                                                                     | 9           | 3                |

|    |                                             | Final Exam                                                                                                                                                                                                                                                                                                              | 16    | 3 |
|----|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|
| 10 | Power Quality<br>Monitoring                 | <ul> <li>Monitoring Considerations</li> <li>Historical Perspective of Power Quality<br/>Measuring Instruments</li> <li>Power Quality Measurement Equipment</li> <li>Assessment of Power Quality<br/>Measurement Data</li> <li>Application of Intelligent Systems</li> <li>Power Quality Monitoring Standards</li> </ul> | 15    | 3 |
| 9  | Wiring and Grounding                        | <ul> <li>Resources</li> <li>Definitions</li> <li>Reasons for Grounding</li> <li>Typical Wiring and Grounding Problems</li> <li>Solutions to Wiring and Grounding Problems</li> </ul>                                                                                                                                    | 14    | 3 |
| 8  | Distributed Generation<br>and Power Quality | <ul> <li>Resurgence of DG</li> <li>DG Technologies</li> <li>Interface to the Utility System</li> <li>Power Quality Issues</li> <li>Operating Conflicts</li> <li>DG on Distribution Networks</li> <li>Siting DG Distributed Generation</li> <li>Interconnection Standards</li> </ul>                                     | 12,13 | 6 |
| 7  | Power Quality<br>Benchmarking               | <ul> <li>Benchmarking Process</li> <li>RMS Voltage Variation Indices</li> <li>Harmonics Indices</li> <li>Power Quality Contracts</li> <li>Power Quality Insurance</li> <li>Power Quality State Estimation</li> <li>Including Power Quality in Distribution<br/>Planning</li> </ul>                                      | 11    | 3 |
| 6  | Long Duration<br>Voltage Variations.        | <ul> <li>Principles of Regulating the Voltage</li> <li>Devices for Voltage Regulation</li> <li>Utility Voltage Regulator Application</li> <li>Capacitors for Voltage Regulation</li> <li>End-User Capacitor Application</li> <li>Regulating Utility Voltage with Distributed<br/>Resources</li> <li>Flicker</li> </ul>  | 10    | 3 |
|    |                                             | <ul> <li>Case Studies</li> <li>Standards of Harmonics</li> </ul>                                                                                                                                                                                                                                                        |       |   |

|       | Practical Aspect NA                             |                    |                  |             |
|-------|-------------------------------------------------|--------------------|------------------|-------------|
| Order | <b>Practical / Tutorials topics</b>             | Number<br>of Weeks | Contact<br>Hours | Course ILOs |
| 1     | •                                               |                    |                  |             |
| 2     | •                                               |                    |                  |             |
|       | Number of Weeks /and Contact Hours Per Semester |                    |                  |             |

| •     | Training/ Tutorials/ Exercises Aspects          | : NA     |                      |  |  |
|-------|-------------------------------------------------|----------|----------------------|--|--|
| Order | Tutorials/ Exercises                            | Week Due | <b>Contact Hours</b> |  |  |
| 1     |                                                 |          |                      |  |  |
| 2     |                                                 |          |                      |  |  |
| Numb  | Number of Weeks /and Contact Hours Per Semester |          |                      |  |  |

# VI. Teaching Strategies:

- Lectures,
- Seminars,
- Self-Learning
- Presentations,
- Case studies
- Analysis and Problem Solving,
- Simulation Exercises

# VII.Assessment Methods of the Course:

- Assignments
- Reports,
- Written Exams.

| VII | VIII. Tasks and Assignments: |                       |      |                    |  |  |  |
|-----|------------------------------|-----------------------|------|--------------------|--|--|--|
| No  | Assignments                  | Individual<br>/Groups | Mark | Week Due           |  |  |  |
| 1   | Research works               | Individual            | 10   | 3. 5, 7, 9         |  |  |  |
| 2   | Mini/Major Project           | Group                 | 10   | 11                 |  |  |  |
| 3   | Case studies                 | Group                 | 5    | 6, 8               |  |  |  |
| 4   | 4 Presentations Individual   |                       |      | 2, 4, 6, 8, 10, 12 |  |  |  |
|     | Total Score                  |                       | 30   |                    |  |  |  |

| IJ | IX. Learning Assessment:  |           |       |                                        |  |  |  |
|----|---------------------------|-----------|-------|----------------------------------------|--|--|--|
| No | Assessment Method         | Week Due  | Mark  | Proportion of<br>Final Assessment<br>% |  |  |  |
| 1  | Tasks and Assignments     | 3,4,5,6   | 30    | 20%                                    |  |  |  |
| 2  | Quizzes                   | 7,9,11,13 | 15    | 10%                                    |  |  |  |
| 3  | Midterm Exam              | 8         | 30    | 20%                                    |  |  |  |
| 5  | Final Exam (Theoretical)  | 75        | 50%   |                                        |  |  |  |
|    | Total <sup>ا</sup> لمجموع | 150       | 100 % |                                        |  |  |  |

| X. L | earning Resources:                                                                             |
|------|------------------------------------------------------------------------------------------------|
|      |                                                                                                |
|      | 1. Required Textbook(s) :                                                                      |
| 1.   | Dugan Roger C, McGranaghan M F, Santoso S and Beaty H Wayne, Electrical Power Systems          |
|      | Quality, 3 <sup>rd</sup> edition, McGraw-Hill, 2012.                                           |
| 2.   | C. Sankaran, Power Quality, CRC Press LLC 2002.                                                |
| 2.   | Essential References:                                                                          |
| 1.   | Alexander Kusko, Marc T. Thompson, Power Quality in Electrical Systems, McGraw-<br>Hill, 2007. |
| 2.   | Barry W. Kennedy, Power Quality Primer, McGraw-Hill, 2000.                                     |
| 3.   | Electronic Materials and Web Sites etc.                                                        |
| 1.   | Course Power Point.                                                                            |
| 2.   | Video clips.                                                                                   |
| 3.   | Links to information resources.                                                                |
|      |                                                                                                |

| الضوابط والسياسات المتبعة في المقرر Course Policies                                                                      | .XI |
|--------------------------------------------------------------------------------------------------------------------------|-----|
| بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:                                             | 1   |
| سياسة حضور الفعاليات التعليمية Class Attendance <u>:</u>                                                                 | 1   |
| <ul> <li>يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك.</li> </ul>                                    |     |
| ا - يقدم أسـتاذ المقرر تقريرا بحضـور وغياب الطلاب للقسَّم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25%          |     |
| ويتم اقرار الحرمان من مجلس القسم.                                                                                        |     |
| الحضور المتأخر Tardy:                                                                                                    | 2   |
| ا - يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث                |     |
| مرات يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.                                                |     |
| ضوابط الامتحان Exam Attendance/Punctuality:                                                                              | 3   |
| - لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان                                         |     |
| <ul> <li>إذا تغيب الطالب عن الامتحان النهائي تطبق اللوائح الخاصة بنظام الامتحان في الكلية.</li> </ul>                    |     |
| التعيينات والمشاريع Assignments & Projects:                                                                              | 4   |
| <ul> <li>يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها.</li> </ul> |     |
| <ul> <li>إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.</li> </ul>        |     |
| الغش Cheating:                                                                                                           | 5   |
| <br>_ في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شوّ ون الطلاب.                         |     |
| <ul> <li>ـ في حال تُبوت قيام الطالب بالغش أو النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف.</li> </ul>     |     |
| الانتحال Plagiarism:                                                                                                     | 6   |
|                                                                                                                          |     |
| سياسات أخرى Other policies:                                                                                              | 7   |
| - أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ                                                      |     |

