6- Course Specification of: Energy Storage Systems Course Code (PME5315)

	General Information About the Course:							
1.	Course Title:	Energy Storage Systems						
2.	Course Code and Number:		PME5315					
			Credit	Hours	Total			
3.	Credit Hours:	Lecture	Practical	Seminar/Tutorial	Totai			
		3	-	-	3			
4.	Study Level and Semester:		2 ^{nc}	¹ Semester				
5.	Pre-requisites (if any):			NA				
6.	Co-requisites (if any):			NA				
	Program (s) in which the course is	MSc. In Electrical Power and Machines						
7.	offered:	Engineering Program						
8.	Language of teaching the course:	English						
9.	Study System:	Courses &	& Thesis					
10.	Prepared By:	Dr. Adel Ahmed Al-Shakiri						
11.	Reviewed by:	Prof. Dr.	Omar Hassa	an Al-Sakaf				
12.	Date of Approval:							

• Course Description:

The course "Energy Storage Systems" covers a wide area of technological content in a compact arrangement and provides a summary of the proven solutions as well as the challenges for further improvements and the necessity for innovations in energy storage methods and systems. The overview includes fundamental understanding of the operating principles, design specifications, material development and production techniques, auxiliary systems, etc. The focus is on the integration of energy storage with mainstream power generation in future electrical grids, including synergy effects in hybrid and polygeneration solutions by integrating several energy storage technologies together with several power generation sources.

• Course Intended Learning Outcomes (CILOs):

Upon successful completion of Energy Storage Systems Course, the graduates will be able to:

- **a1** Understand Concept and operation of available and relevant energy storage systems.
- **a2** Identify available technologies and materials for energy storage and their typical application areas together with their advantages and development challenges
- **a3** Recognize Different needs within energy storage, cause and propagation of efficiency losses in various energy storage systems
- **b1** Explain the concept and operation of available and relevant energy storage systems.
- **b2-** Evaluate some promising aspects regarding system integration of energy storage solutions with conventional and renewable energy conversion systems and hybrid power plants;
- **b3-** Design energy and power needs of simple hybrid systems based on output and energy capacity
- **c1-** Calculate the efficiency of charging cycles for different energy storage systems.
- c2- Assess the need for introducing energy storage within a closed energy system;
- c3 Estimate via simplified pathways the necessary dimensions, power capacity and operational parameters for energy storage systems;
- **d1-** Communicate effectively within teams to accomplish a common goal.
- d2- Engage in independent lifelong learning.

• A	• Alignment of Course Intended Learning Outcomes (CILOs) to				
P	rogram Intended Learning Out	comes (PILOS)			
	CILOs	PILOs			
a.	Knowledge and Understanding: Upon	A. Knowledge and Understanding:			
	successful completion of the Energy	Upon successful completion of the			
	Storage Systems Course, the graduates	MSc. In Electrical Power and			
	will be able to:	Machines Engineering Program, the			
		graduates will be able to:			
a1.	Understand Concept and operation of	A1. Demonstrate in-depth understanding of			
	available and relevant energy storage	the theory and practice of modern			
	systems.	electrical power systems design and			
		operation and system identification.			
a2.	Identify available technologies and	A2. Recognize and comprehend the key role			
	materials for energy storage and their	of sustainable energy for national and global			
	typical application areas together with	sustainable development.			
	their advantages and development				
	challenges				
a3.	Recognize Different needs within energy	A3. Explain in detail the key considerations			
	storage, cause and propagation of	and challenges of sustainable design and			
	efficiency losses in various energy storage	development of modern electrical power			
	systems	system components.			
b. Cog	nitive/ Intellectual Skills: Upon successful	B. Cognitive/ Intellectual Skills: Upon			
com	pletion of the Energy Storage Systems	successful completion of the MSc. In			
Cou	rse, the graduates will be able to:	Electrical Power and Machines			
		Engineering Program, the graduates will			
		be able to:			

-					
b1.	Explain the concept and operation of available and relevant energy storage systems.	B1. Identify and apply specialized knowledge and skills to solve problems that are critical to future growth of industry and business.			
b2.	Evaluate some promising aspects regarding system integration of energy storage solutions with conventional and renewable energy conversion systems and hybrid power plants;	B2. Critically review the scientific literature for effective justification and support of results and decisions.			
b3.	Design energy and power needs of simple hybrid systems based on output and energy capacity	B3. Select appropriate techniques and tools for successful problem solving .			
c. Pro	fessional and Practical Skills: Upon	C. Professional and Practical Skills: Upon			
succ	cessful completion of the Energy Storage	successful completion of the MSc. In			
Syst	tems Course, the graduates will be able to:	Electrical Power and Machines			
		Engineering Program, the graduates will			
		be able to:			
c1.	Calculate the efficiency of charging	C1. Apply modern tools for research,			
	cycles for different energy storage	computation, simulation, analysis, and			
	systems.	design of modern power systems			
c2.	Assess the need for introducing energy storage within a closed energy system;	C2. Recognize the interdisciplinary nature of technical problems and apply other areas of knowledge to the solution, and work with other professions to arrive at a solution for complex engineering problems.			
c3.	Estimate via simplified pathways the	C3 Employ design standards and safety			
	necessary dimensions, power capacity	codes as an integral part of the design and			
	and operational parameters for energy	building process for machine parts and			
	storage systems;	systems.			
d. Tra	nsferable Skills: Upon successful	D. Transferable Skills: Upon successful			
com	pletion of the Energy Storage Systems	completion of the MSc. In Electrical			
Cou	rse, the graduates will be able to:	Power and Machines Engineering			
		Program , the graduates will be able to:			
d1.	Communicate effectively within teams to accomplish a common goal.	D1. Demonstrate leadership skills in the workplace, to function professionally in a globally competitive world, and to communicate engineering results effectively.			
d2.	Engage in independent lifelong learning.	D3. Pursue advanced graduate studies and lifelong learning.			

Alignment of CILOs to Teaching and Assessment Strategies					
a. Alignment of Knowledge and Understanding CILOs:					
Knowledge and Understanding CILOs	Teaching Strategies	Assessment Strategies			

a1.	Understand Concept and operation of available and relevant energy storage systems.	f • Lectures, • Self-Learning	Written Exam,		
a2.	Identify available technologies and materials for energy storage and thei typical application areas together with their advantages and developmen challenge Recognize Different needs within	d• Lectures,r• Seminars,•• Self-LearningtProblems/Studies,s•	Written Exam, Assignments Written Exam		
h	energy storage, cause and propagation of efficiency losses in various energy storage system	n • Case study, •	Assignments		
U.	Intellectual Skills CH Os	Taasking Stuatesias	A second set Students		
b1.	Explain the concept and operation of available and relevant energy storage systems.	 Teaching Strategies Lectures, Simulation Exercises, Analysis and Problem Solving, 	 Assessment Strategies Reports, Survey, Written Exam, Assignments 		
b2.	Evaluate some promising aspects regarding system integration of energy storage solutions with conventional and renewable energy conversion systems and hybrid power plants;	 Lectures, Self-Learning, Simulation Exercises, Analysis and Problem Solving, 	 Reports, Survey, Written Exam, Assignments 		
b3.	Design energy and power needs of simple hybrid systems based on output and energy capacity	 Lectures, Analysis and Problem Solving, 	Written Exam,Assignments		
c.	Alignment of Professional and Pract	ical Skills CILOs:			
P	rofessional and Practical Skills CILOs	Teaching Strategies	Assessment Strategies		
c1.	Calculate the efficiency of charging cycles for different energy storage systems.	Lectures,Case Study,Simulation Exercises,	 Written Research Proposal, 		
c2.	Assess the need for introducing energy storage within a closed energy system;	Lectures,Case Study,Simulation Exercises,	 Written Research Proposal 		
с3.	Estimate via simplified pathways the necessary dimensions, power capacity and operational parameters for energy storage systems;	 Lectures, Case Study, Analysis and Problem Solving, 	 Seminar Report, Written Research Proposal, 		
d	Alignment of Transferable (General) Skills CILOs:			
	Transferable (General) Skills CILOs	Teaching Strategies	Assessment Strategies		
d1.	Communicate effectively within teams to accomplish a common goal.	 Dissertation Defenses and Presentation, Independent Study, Presenting Researches, Publish Research Papers. 	 Written Research Proposal Written Exam, Assignments, Survey, Written Report. 		

ſ	d2.	Engage	in	independent	lifelong	•	Dissertation Defenses and	•	Written	Research
		learning.					Presentation,		Proposal	
		U U				•	Independent Study,	 Assignments, 		nts,
						•	Presenting Researches,	-	Written Re	eport.
						•	Publish Research Papers.			

Course Content							
1.	Theoretical Aspect						
Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours	Course ILOs		
1	An Introduction to Modern Power Systems	 The Electric Power System Energy Management Systems The Regulation of the Electricity System and the Electrical Markets Exercise: A Load-Flow Algorithm with Gauss– Seidel 	2	6	a.1, a.2, a3, b.1, b.2		
2	Generating Systems Based on Renewable Power	 Renewable Power Systems Renewable Power Generation Technologies Grid Code Requirements 	2	6	b.1, b.2, b3, c.1, c.2, d.1, d.2		
3	Energy Storage Technologies	 The Description of the Technology Power Conversion Systems for Electrical Storage 	3	9	b.1, b.2, b3, d.1, d.2		
	Mic	l Term Exam	1	3	All		
4	Cost Models and Economic Analysis	 A Cost Model for Storage Technologies An Example of an Application 	1	3	a.1, b.1, b.2, c.1, c.2, c3,		

5	Modeling, Control, and Simulation	 Modeling of Storage Technologies: A General Approach Orientated to Simulation Objectives The Modeling and Control of the Grid-Side Converter The Modeling and Control of Storage-Side Converters and Storage Containers An Example of an Application: Discharging Storage Installations Following Various Control Rules 	2	6	b.1, b.2, b3, c.1, c.2, c3, d.1, d.2
6	Short-Term Applications of Energy Storage Installations in the Power System	 A Description of Short- Term Applications An Example of Fluctuation Suppression: Flywheels for Wind Power Smoothing 	2	6	a.1, a.2, a3, b.1, b.2, c.1, c.2,
7	Mid- and Long- Term Applications of Energy Storage Installations in the Power System	 A Description of Mid- and Long-Term Applications Example: The Sizing of Batteries for Load Following in an Isolated Power System with PV Generation. 	2	6	a.1, a.2, a3, b.1, b.2, c.1, c.2,
8	Fina	al Term Exam	1	3	All
	Number of Weeks /and C	ontact Hours Per Semester	16	48	

2.	Practical Aspect NA			
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs
1				
2	•			
	Number of Weeks /and Contact Hours Per Semester			

3.	Tutorial Aspect: NA			
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)
1				
2				
	Number of Weeks /and Units Per Semester			

• Teaching Strategies:

- Lectures,
- Seminars,
- Self-Learning
- Case studies
- Analysis and Problem Solving
- Simulations and exercises

• Assessment Methods of the Course:

- □ Assignments
- □ Seminar Reports
- □ Written Exams

•	Tasks and Assignments:				
No	Assignments/ Tasks	Individual/ Group	Mark	Week Due	CILOs (symbols)
1	Research works	Individual	5	3. 5, 7, 9	a1, a2, b1, b2, d1, d2
2	Mini/Major Project	Group	5	11	a1, a2, b1, b2, d1, d2
3	Case studies	Group	5	6, 8	a1, a2, b1, b2, d1, d2
4	Presentations	Individual	5	2, 4, 6, 8, 10, 12	a1, a2, b1, b2, d1, d2
	Total Score			==	

•	Learning Assessment:							
No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment	CILOs			
1	Tasks and Assignments	3,4,5,6	20	20%	a1, a2, b1, b2, d1, d2			
2	Quizzes	7,9,11,13	10	10%	a1, a2, b1, b2, c1, c2, c3			
3	Midterm Exam	8	20	20%	All			
5	Final Exam (Theoretical)	16	50	50%	All			
	Total		100	100%	===			

• Lea	rning Resources :
	8
	1. Required Textbook(s) :
1.	Francisco Díaz-González, Andreas Sumper, Oriol Gomis-Bellmunt, Energy Storage in
	Power System, John Wiley & Sons Ltd, 2016.
2.	A.G. Ter-Gazarian, Energy Storage for Power Systems, 2 nd Edittion, The Institution of
	Engineering and Technology, London, United Kingdom, 2011
	2. Essential References:
1.	Benoît Robyns, Bruno François, Gauthier Delille, Christophe Saudemont, Energy
	Storage in Electric Power Grids, ISTE Ltd and John Wiley & Sons, Inc, 2015
2.	Ziad Melhem, Electricity transmission, distribution and storage systems, © Woodhead
	Publishing Limited, 2013
	3. Electronic Materials and Web Sites <i>etc</i> .
1.	Course Power Point.
2.	Video clips.
3.	Links to information resources.

• الضوابط والسياسات المتبعة في المقرر Course Policies)
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:	
سياسة حضور الفعاليات التعليمية Class Attendance <u>:</u>	1
 يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. 	
 يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسّم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25% 	
ويتم اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
 يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع ساعة لثلاث مرات في الفصل الدراسي، وإذا تأخر زيادة عن ثلاث 	
مرات يحذر شفويا من أستاذ المقرر، وعند عدم الالترام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
- لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان	
ـ إذا تغيب الطالب عن الامتحان النهائي تُطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
التعيينات والمشاريع Assignments & Projects:	4
 يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تنفيذ التكليفات وتسليمها. 	
 إذا تأخر الطالب في تسليم التكليفات عن الموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه. 	
الغش Cheating:	5
ـ في حال ثبوت قيام الطالب بالغش في الامتحان النصفي أو النهائي تطبق عليه لائحة شؤون الطلاب.	
 ـ في حال ثبوت قيام الطالب بالغش او النقل في التكليفات والمشاريع يحرم من الدرجة المخصصة للتكليف. 	
الانتحال Plagiarism:	6
– في حالة وجود شخص ينتحل شخصية طالب لأداء الامتحان نيابة عنه تطبق اللائحة الخاصة بذلك	
سیاسات آخری Other policies <u>:</u>	7
 أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ 	

Course Plan (Syllabus): Energy Storage Systems

Course Code (PME5315)

I. Information about Faculty Member Responsible for the Course:							
Name	Dr. AdelAl-Shakiri	Office Hours					
Location & Telephone No.	Faculty of Engineering, 772771672	SAT	SUN	MON	TUE	WED	THU
E-mail	ashakiri62@gmail.com						

II.	I. General information about the course:						
1.	Course Title		Energy Storage Systems				
2.	Course Code and Number	PME5315					
		Credit Hours					
3.	Credit Hours	Lecture	Practical	Seminar/Tutorial	Total		
		3	-	-	3		
4.	Study Level and Semester		2 nd	Semester			
5.	Pre-requisites			NA			
6.	Co –requisite			NA			
7.	Program (s) in which the course is offered	MSc. In Electrical Power and Machines Engineering Program					
8.	Language of teaching the course	English					
9.	Location of teaching the course	Electrical Engineering Department					

II. Course Description:

The course "Energy Storage Systems" covers a wide area of technological content in a compact arrangement and provides a summary of the proven solutions as well as the challenges for further improvements and the necessity for innovations in energy storage methods and systems. The overview includes fundamental understanding of the operating principles, design specifications, material development and production techniques, auxiliary systems, etc. The focus is on the integration of energy storage with mainstream power generation in future electrical grids, including synergy effects in hybrid and polygeneration solutions by integrating several energy storage technologies together with several power generation sources.

IV. Course Intended Learning Outcomes (CILOs):

Upon successful completion of Energy Storage Systems Course, the graduates will be able to:

- a1 Understand Concept and operation of available and relevant energy storage systems.
- **a2** Identify available technologies and materials for energy storage and their typical application areas together with their advantages and development challenges
- **a3** Recognize Different needs within energy storage, cause and propagation of efficiency losses in various energy storage systems
- **b1** Explain the concept and operation of available and relevant energy storage systems.
- **b2-** Evaluate some promising aspects regarding system integration of energy storage solutions with conventional and renewable energy conversion systems and hybrid power plants;
- b3- Design energy and power needs of simple hybrid systems based on output and energy capacity
- c1- Calculate the efficiency of charging cycles for different energy storage systems.
- c2- Assess the need for introducing energy storage within a closed energy system;
- **c3** Estimate via simplified pathways the necessary dimensions, power capacity and operational parameters for energy storage systems;
- d1- Communicate effectively within teams to accomplish a common goal.
- d2- Engage in independent lifelong learning.

Order	Topic List / Units	Sub -Topics List	Number of Weeks	Contact Hours
1	An Introduction to Modern Power Systems	 5. The Electric Power System 6. Energy Management Systems 7. The Regulation of the Electricity System and the Electrical Markets 8. Exercise: A Load-Flow Algorithm with Gauss–Seidel 	2	6
2	Generating Systems Based on Renewable Power	 Renewable Power Systems Renewable Power Generation Technologies Grid Code Requirements 	2	6
3	Energy Storage Technologies	 The Description of the Technology Power Conversion Systems for Electrical Storage 	3	9
	Mi	d Term Exam	1	3
4	Cost Models and Economic Analysis	 A Cost Model for Storage Technologies An Example of an Application 	1	3
5	Modeling, Control, and Simulation	 Modeling of Storage Technologies: A General Approach Orientated to Simulation Objectives The Modeling and Control of the Grid-Side Converter The Modeling and Control of Storage-Side Converters and Storage Containers An Example of an Application: Discharging Storage Installations Following Various Control Rules 	2	6
6	Short-Term Applications of Energy Storage Installations in the Power System	 A Description of Short-Term Applications An Example of Fluctuation Suppression: Flywheels for Wind Power Smoothing 	2	6

7	Mid- and Long-Term Applications of Energy Storage Installations in the Power System	 3. A Description of Mid- and Long-Term Applications 4. Example: The Sizing of Batteries for Load Following in an Isolated Power System with PV Generation. 	2	6
8	Final Term Exam		1	3
	Number of Weeks /and C	Contact Hours Per Semester	16	48

	1. Practical Aspect NA	L		
Order	Practical / Tutorials topics	Number of Weeks	Contact Hours	Course ILOs
1	•			
2	•			
	Number of Weeks /and Contact Hours Per Semester			

2	2. Training/ Tutorials/ Exercises Aspects: NA					
Order	Tutorials/ Exercises	Week Due	Contact Hours			
1						
2						
Numb	Number of Weeks /and Contact Hours Per Semester					

V. Teaching Strategies:

- Lectures,
- Seminars,
- Self-Learning
- Case studies
- Analysis and Problem Solving
- Simulations and exercises

VI.Assessment Methods of the Course:

- □ Assignments
- □ Seminar Reports
- □ Written Exams

No	Assignments/ Tasks Individual/ Group		Mark	Week Due
1	Research works	Individual	5	3. 5, 7, 9
2	Mini/Major Project	Group	5	11
3	Case studies	Group	5	6, 8
4	Presentations Individual		5	2, 4, 6, 8, 10, 12
	Total Score		20	

No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment
1	Tasks and Assignments	3,4,5,6	20	20%
2	Quizzes	7,9,11,13	10	10%
3	Midterm Exam	8	20	20%
5	Final Exam (Theoretical)	16	50	50%
	Total			100%

Learning Resources :				
1. Required Textbook(s) :				
1. Francisco Díaz-González, Andreas Sumper, Oriol Gomis-Bellmunt, Energy Storage in				
Power System, John Wiley & Sons Ltd, 2016.				
2. A.G. Ter-Gazarian, Energy Storage for Power Systems, 2 nd Edittion, The Institution of				
Engineering and Technology, London, United Kingdom, 2011				
2. Essential References:				
1. Benoît Robyns, Bruno François, Gauthier Delille, Christophe Saudemont, Energy				
Storage in Electric Power Grids, ISTE Ltd and John Wiley & Sons, Inc, 2015				
2. Ziad Melhem, Electricity transmission, distribution and storage systems, © Woodhead				
Publishing Limited, 2013				
3. Electronic Materials and Web Sites etc.				

- 1. Course Power Point.
- 2. Video clips.
- 3. Links to information resources.

• الضوابط والسياسات المتبعة في المقرر Course Policies	
بعد الرجوع للوائح الجامعة يتم كتابة السياسة العامة للمقرر فيما يتعلق بالآتي:	÷
سياسة حضور الفعاليات التعليمية Class Attendance:	1
 يلتزم الطالب بحضور 75% من المحاضرات ويحرم في حال عدم الوفاء بذلك. 	
- يقدم أستاذ المقرر تقريرا بحضور وغياب الطلاب للقسَّم ويحرم الطالب من دخول الامتحان في حال تجاوز الغياب 25%	
ويتم اقرار الحرمان من مجلس القسم.	
الحضور المتأخر Tardy:	2
- يسمح للطالب حضور المحاضرة إذا تأخر لمدة ربع سباعة لثلاث مرات في الفصيل الدراسي، وإذا تأخر زيادة عن ثلاث	
مرات يحذر شفويا من أستاذ المقرر، وعند عدم الالتزام يمنع من دخول المحاضرة.	
ضوابط الامتحان Exam Attendance/Punctuality:	3
- لا يسمح للطالب دخول الامتحان النهائي إذا تأخر مقدار (20) دقيقة من بدء الامتحان	
- إذا تغيب الطالب عن الامتحان النهائي تُطبق اللوائح الخاصة بنظام الامتحان في الكلية.	
التعيينات والمشاريع Assignments & Projects:	4
- يحدد أستاذ المقرر نوع التعيينات في بداية الفصل ويحدد مواعيد تسليمها وضوابط تثفيذ التكليفات وتسليمها.	
ـ إذا تأخر الطالب في تسليم التكليفات عن ألموعد المحدد يحرم من درجة التكليف الذي تأخر في تسليمه.	
الغش Cheating:	5
 - في حال ثبوت قيام الطالب بالغش في الامتحان النصف أو النهائي تطبق عليه لائحة شوون الطلاب	
- في حال ثبوت قيام الطالب بالغش أو النقل في التكليفات والمشاربع بحرم من الدرجة المخصصة للتكليف.	
الانتحال Plagiarism:	6
	Ů
 في حالة وجود شخص ينتحل شخصية طالب لاداء الامتحان نيابة عنه نطبق اللائحة الخاصة بدلك 	
سياسات اخرى Other policies:	7
 أي سياسات أخرى مثل استخدام الموبايل أو مواعيد تسليم التكليفات الخ 	