

قائمة الاسئلة

دوائر كهربائية 2 - كلية الهندسة - قسم الميكاترونكس- المستوى الثاني - 3 ساعات - درجة هذا الاختبار (50)

د عادل راوع

- 1) Capacitive reactance is more when:
 - 1) Capacitance is less and frequency of supply is more.
 - 2) + Capacitance is less and frequency of supply is less.
 - 3) Capacitance is more and frequency of supply is more.
 - 4) Capacitance is more and frequency of supply is less.
- 2) Pure inductive circuit:
 - 1) Consumes some power on average.
 - 2) Does not take power at all from a line.
 - Takes power from the line during some part of the cycle and then return back it during other part of the cycle.
 - 4) None of the above.
- 3) In an RLC circuit, which of the following is always used as a vector reference?
 - 1) + Voltage.
 - 2) Resistance.
 - 3) Impedance.
 - 4) Current.
- 4) What is the unit of admittance?
 - 1) ohm.
 - 2) henry.
 - 3) farad.
 - 4) + ohm^{-1}
- 5) A sine wave a frequency of 50Hz, its angular frequency is radian/second.
 - 1) + 100π
 - 2) 50π
 - 3) -25π
 - 4) 75π
- 6) The period of a sine wave is 0.02 seconds, its frequency is:
 - 1) 100 HZ
 - 2) + 50 HZ
 - 3) 40 HZ
 - 4) 20 HZ
- 7) A heater is rated as 230 V, 3 kW, A.C. The value 230 V refers to:
 - 1) Average voltage.
 - 2) + r.m.s. voltage.
 - 3) Peak voltage.
 - 4) none of the previous.
- 8) If two sine waves of same frequency have a phase difference of pi radian, then:
 - 1) both will reach their maximum values at same instant.
 - 2) both will reach their minimum values at same instant.
 - 3) + when one wave reaches its maximum value, the other will reach its minimum value.
 - 4) none of the above.
- 9) The r.m.s. value and mean value is the same in the case of:
 - 1) triangular wave.
 - 2) half wave rectified sine wave.
 - 3) + square wave.

- 4) sine wave.
- 10) Power factor of an electrical circuit is equal to:
 - 1) R/Z.
 - 2) + cosine of phase angle difference between current and voltage.
 - 3) kW/kVA.
 - 4) sine wave.
- 11) the time constant of an inductive circuit
 - 1) + Increases with increase of inductance and decrease of resistance.
 - 2) Increases with increase of inductance and increase of resistance.
 - 3) Increases with decrease of inductance and decrease of resistance.
 - 4) Increases with decrease of inductance and increase of resistance.
- 12) In a highly capacitive circuit the:
 - 1) Apparent power is equal to active power.
 - 2) Reactive power is more than to apparent power.
 - 3) + Reactive power is more than to active power.
 - 4) Active power is more than to reactive power.
- 13) Power factor of the following circuit will be unity:
 - 1) Inductance.
 - 2) Capacitance.
 - 3) + Resistance.
 - 4) Both Inductance ,Capacitance
- 14) In a pure resistive circuit:
 - 1) The current lags behind the voltage by 90°
 - 2) The current leads the voltage by 90°
 - 3) The current can lag or lead the voltage by 90°.
 - 4) + The current is in phase with voltage.
- 15) The input of an A.C. circuit having power factor of 0.8 lagging is 40 kVA, the power drawn by the circuit is:
 - 1) 12 kW.
 - 2) 22 kW.
 - + 32 kW.
 - 4) 64 kW.
- 16) as the next figure the average value of waveform is:

- 1) -10 A.
- 2) + -1.6 A.
- 3) 4A
- 4) 0A

17)

The voltage across a 0.5 H coil is $v=100\,sin\,(20t)$. Then the sinusoidal expression for the current is:

- a. $i = 10 \sin(20t 90^\circ)$.
- b. $i = 10 \sin(20t + 90^\circ)$.
- c. $i = 10 \sin(20t)$.
- d. $i = 10 \sin(20t 60^\circ)$.
- 1) + a
- 2) b
- 3) c
- 4) d
- 18) With Conversion of the voltage-controlled source in next Figure to a current- controlled source I = :
 - a. 0.48 A∠10°
 - b. 4.82 A∠0°
 - c. 0.48 A∠0°
 - d. 0.40 A∠0°
 - 1) a
 - 2) t
 - 3) + 0
 - 4) d
- 19) from the next figure $I_2 = :$

- 1) -1.72 A∠ 86.92°.
- 2) 1.72 A∠ 86.92°.
- 3) -1.27 A∠ 86.92°.
- 4) + 1.27 *A*∠ − 86.92°.

20)

from the next figure $Z_T = :$

- 1) 23.5 Ω∠ 58.41°.
- 2) 2.35 Ω∠ 68.41°.
- 3) + $2.35 \Omega \angle 58.41^{\circ}$.
- 4) 3.25 Ω∠ 85.41°.

21) from the next figure the current I through the 6 Ω resistor is:

- 1) $2.24 A \angle 70.2^{\circ}$.
- 2) + 4.42 A∠ 70.2°.
- 3) 44.2 A∠ 7.02°.
- 4) 4.42 A∠ 60.2°.

22)

from the next figure the Norton equivalent circuit for the network external to the 7 Ω capacitive reactance is:

1) +
$$I_N = 2.68 \text{ A} \angle -10.3^{\circ}$$
. and $Z_N = 7.50 \Omega + j 2.50 \Omega$.

2)
$$I_N = 26.8 \; A \angle - 20.3^{\circ}$$
. and $Z_N = 7.50 \; \Omega + j \; 2.50 \; \Omega$

3) -
$$I_N = 2.68~A \angle -10.3^\circ$$
. and $Z_N = 5.70~\Omega + j~25.0~\Omega$

4)
$$I_N = 2.68 \text{ A} \angle - 10.3^{\circ}$$
. and $Z_N = 2.50 \Omega + j 7.50 \Omega$

from the next figure the for maximum power delivering to the load the impedance Z_L must be:

1)
$$Z_L = -0.72 \Omega - j 5.46 \Omega$$

2) +
$$Z_L = 0.72 \Omega - j 5.46 \Omega$$

3)
$$Z_L = 5.2 \Omega - j 3.6 \Omega$$

4)
$$Z_L = 7.2 \Omega - j 54.6 \Omega$$