

قائمة الاسئلة

اختبار النهائي للعام الجامعي 2025/2024م-كلية الهندسة :: ميكانيكا الموائع2 - كلية الهندسة - قسم الميكانيك - المستوى الثالث - 3ساعات - در محمد الشغدري

- 1) The identification of dimensionless groups that provide correspondence between model and prototype data is carried out through dimensional analysis
 - 1) + TRUE.
 - 2) FALSE.
- 2) Similitude is the theory and art of predicting prototype performance from model observations.
 - 1) + TRUE.
 - 2) FALSE.
- 3) Model analysis of airplanes and projectile moving at super-sonic speed are based on
 - 1) Reynold number
 - 2) Froude number
 - 3) + Mach number
 - 4) Weber number.
- 4) A general study is to be made of the height of rise of liquid in a capillary tube as a function of time after the start of a test. Other significant variables include surface tension, mass density, specific weight, viscosity, and diameter of the tube. How many dimensionless groups are there
 - 1) + 4
 - 2) 3
 - 3) 5
 - 4) 2
- 5) means that the model is an exact geometric replica of the prototype. * Consequently, if a 1:10 scale model is specified, all linear dimensions of the model must be 1/10 of those of the prototype.
 - 1) + Geometric similitude.
 - 2) Common π -Groups.
 - 3) dimensional analysis.
- 6) The drag characteristics of a blimp D=10 m, L=120 m, V= 20 m/s; if 1/10 scale model is to be tested in a wind tunnel for dynamically similar condition, what speed in the wind tunnel ?

- 1) 173 m/s
- 2) 108 m/s
- + 100 m/s
- 4) 113 m/s
- 7) is unimportant when gravity causes only a hydrostatic pressure distribution, such as in a closed conduit
 - 1) Reynolds number
 - 2) + Froude number
 - 3) Mach number
- 8) Darcy-Weisbach equation is used for either laminar flow or turbulent flow and only for round pipes
 - 1) TRUE.
 - 2) + FALSE.
- 9) For laminar flow friction factor is dependent of relative roughness

- 1) TRUE.
- 2) + FALSE.
- 10) Liquid (γ = 10 kN/m³) is flowing in a pipe at a steady rate but the direction of flow is unknown. If the pipe diameter is 12 mm and the liquid viscosity is 3.0 × 10⁻³ N·s/m²

Is the liquid moving in the pipe?

- a) upward
- b) downward

- 1) a
- 2) + b
- 11) What is the head loss of the pipe?
 - a) 1m
 - b) 5m
 - c) 7m
 - d) 12m

- 1) + a
- 2) 1
- 3) c
- 4) d
- 12) if the magnitude of the mean velocity in the pipe =0.90m/s the flow is
 - a) turbulent
 - b) laminar

- 1) a
- 2) + 1

13)

What is the velocity of oil at a rate of 0.2 m^3/s?

- a) 6.65 m/s
- b) 2.83 m/s
- c) 5.66 m/s
- d) 4.65 m/s

- 1) __- a
- 2) + b
- 3) c
- 4) d
- 14) What is the Reynolds number of oil

(kinematic viscosity = 10-5 m²/s)

- a) 5000
- b) 10,000
- c) 85000

- 1) a
- 2) b
- 3) + c
- 15) What is the head of the pump for Ke =0.03, KE=1and f=0.019?
 - a) 16.3 m
 - b) 19.7 m
 - c) 20.6 m
 - d) 18.7 m

- 1) + a
- 2) b
- 3) c
- 4) d
- 16) what power must be added to the water by the pump?
 - a) 30.1 kw
 - b) 34.8 kw
 - c) 24.5 kw
 - d) 66.54 kw

- 1) + a
- 2) b
- 3) c
- 4) d
- 17) Drag is defined as the force exerted by a flowing fluid on a solid body
 - 1) + in the direction of flow
 - 2) perpendicular to the direction of flow
 - 3) in the direction which is at an angle of 45° to the direction of flow
- 18) Lift force is defined as the force exerted by a flowing fluid on a solid body
 - 1) in the direction of flow
 - 2) + perpendicular to the direction of flow
 - 3) at an angle of 45° to the direction of flow
- 19) A sphere of diameter 100 mm, rotating at a rate of 286 rpm, is situated in a stream of water (15°C) that has a velocity of 1.5 m/s. Determine the lift force (in newtons) on the rotating sphere.
 - a) 2.8 N
 - b) 3.82 N
 - c) 1.8 N
 - d) 3.98 N

- 1) + a
- 2) b
- 3) c
- 4) d
- 20) A car with a mass of 1000 kg is driven and is moving at 30 m/s. The coefficient of rolling friction is 0.02, the drag coefficient is 0.4, and the cross-sectional area is 4 m². Find the power (in kW) needed for this condition...
 - a) 33.99 hp
 - b) 26.43 hp
 - c) 25 hp
 - d) 42.64 hp

- 1) a
- 2) b
- 3) ___ c
- 4) + d
- 21) The landing speed of an airplane is 8 m/s faster than its stalling speed. The lift coefficient at landing speed is 1.2, and the maximum lift coefficient (stall condition) is 1.4. Calculate landing speed.
 - 1) 127.3 m/s
 - + 107.8 m/s

- 3) 137.8 m/s
- 4) 117.3 m/s
- A velocity traverse in a 24 cm oil pipe yields the data in the table.

What is the discharge

- a) 0.196 m³/s
- b) 0.98 m³/s
- c) $0.78 \text{ m}^3/\text{s}$
- d) 0.91 m³/s

r (cm)	V (m/s)	r (cm)	V (m/s)
0	8.7	7	5.8
1	8.6	8	4.9
2	8.4	9	3.8
3	8.2	10	2.5
4	7.7	10.5	1.9
5	7.2	11.0	1.4
6	6.5	11.5	0.7

- 1) + a
- 2) b
- 3) c
- 4) d
- 23) What is the mean velocity
 - a) 7.98 m/s
 - b) 4.33 m/s
 - c) 6.87 m/s
 - d) 5.95 m/s

r (cm)	V (m/s)	r (cm)	V (m/s)
0	8.7	7	5.8
1	8.6	8	4.9
2	8.4	9	3.8
3	8.2	10	2.5
4	7.7	10.5	1.9
5	7.2	11.0	1.4
6	6.5	11.5	0.7

- 1) a
- 2) + b
- 3) c
- 4) d
- 24) If water (20°C) is flowing through this 4.3 cm orifice, estimate the rate of flow. Assume flow coefficient K = 0.6.
 - a) $2.44 \times 10^{-3} \text{ m}^{3/\text{s}}$
 - b) $4.44 \times 10^{-3} \text{ m}^{3/\text{s}}$
 - c) $7.44 \times 10^{-3} \text{ m}^{3/\text{s}}$
 - d) $9.44 \times 10^{-3} \text{ m}^{3/\text{s}}$

1) - a

- 2) + b
- 3) c
- 4) d
- 25) The pressure differential across this venturi meter is 100 kPa. What is the discharge of water through it?(v =1.31 x 10-6 m²/s). Assume that K=1.02
 - a) 11.13 m³/s
 - b) 14.44 m³/s
 - c) 17.14 m³/s
 - d) 19.44 m³/s

- 1) + a
- 2) b
- 3) c
- 4) d