

قائمة الاسئلة

اختبار النهائي للعام الجامعي 2025/2024م-كلية الهندسة :: دوائر كهربائية 2- كلية الهندسة - قسم الطبية الحيوية - المستوى الثاني- 3ساعات - د

- 1) Which of the following factors can affect the shape of a sine wave?
 - 1) Amplitude only
 - 2) Frequency only
 - 3) + Both amplitude and frequency
 - 4) None of the above
- 2) What is the correct mathematical expression for a sine wave if the RMS value is 7.07 V and the frequency is 50Hz?
 - 1) + $10 \sin (100\pi t)$
 - 2) $10 \cos (2\pi * 50 t)$
 - 3) $7.07 \sin(2\pi * 50 t)$
 - 4) $7.07 \cos(2\pi t)$
- 3) If the frequency is 60 Hz and the wave starts at zero volts at 0°, what is the first time the wave will reach its peak value?
 - 1) 1/120 seconds
 - 2) 1/60 seconds
 - 3) 1/100 seconds
 - 4) + 1/240 seconds
- 4) If the peak-to-peak voltage of a sine wave is 141.5 V, what is the RMS value of this wave?
 - 1) 100 V
 - 2) 70.75 V
 - 3) + 50 V
 - 4) 200 V
- 5) If the distance between the capacitor plates is doubled, the capacitance will become:
 - 1) Twice the original value
 - 2) + Half the original value
 - 3) Remain unchanged
 - 4) Equal to zero
- 6) Which of the following capacitors can withstand the highest voltage?
 - 1) + Ceramic capacitors
 - 2) Electrolytic capacitors
 - 3) Plastic-film capacitors
 - 4) Thin-layer capacitors
- 7) An uncharged capacitor and a resistor are connected in series with a switch and a 12 V battery. At the instant the switch is closed, the voltage across the capacitor is
 - 1) 12 V
 - 2) 6 V
 - 3) 24 V
 - 4) + 0 V
- 8) Why is an inductor often wound around a ferromagnetic core?
 - 1) To reduce self-inductance
 - 2) + To increase inductance
 - 3) To increase resistance
 - 4) To minimize current variation
- 9) How do non-magnetic materials affect inductance?
 - 1) Significantly increase it
 - 2) Reduce it to zero

- 3) + Do not affect it
- 4) Prevent magnetic field formation
- 10) Which of the following reduces parasitic capacitance in an inductor?
 - 1) Decreasing spacing between turns
 - 2) Using thicker wire
 - 3) + Increasing spacing between turns
 - 4) Using a high-permeability core material
- 11) What determines the winding resistance in an inductor?
 - 1) Only the number of turns
 - 2) + Wire material and length
 - 3) Magnetic flux density
 - 4) Core resistance
- 12) An inductor and a resistor are in series with a sinusoidal voltage source. The

frequency is set so that the inductive reactance is equal to the resistance. If the frequency is increased, then

- a. $V_R > V_L$
- b. $V_L < V_R$
- c. $V_L = V_R$
- d. $V_L > V_R$
 - 1) a
 - 2) b
 - 3) c
 - (4) + d
- 13) If resistance increases in a circuit with both resistance and capacitive reactance, the phase angle?
 - 1) Increases
 - 2) + Decreases
 - 3) Remains the same
 - 4) Becomes 90°
- 14) The unit of true power is?
 - 1) VAR
 - 2) + Watt (W)
 - 3) Volt-Ampere (VA)
 - 4) Ohm (Ω)
- 15) In an AC circuit where the phase angle between voltage and current increases, the power factor?
 - 1) Increases
 - 2) Remains constant
 - 3) + Decreases
 - 4) Is always 1
- 16) In a certain series resonant circuit, VC = 150 V, VL = 150 V, and VR = 50 V. The value of the source voltage is
 - 1) 150 V
 - 2) 300 V
 - 3) + 50 V
 - 4) 350 V
- 17) At steady-state, the inductor acts as:
 - 1) An open circuit
 - 2) A variable resistor
 - 3) A fixed resistor
 - 4) + Almost a short circuit

- 18) In an RL circuit where the final current is 10 A, what is the current in the coil after 5 tau?
 - 1) 8.5 A
 - 2) + 9.93 A
 - 3) 6.3 A
 - 4) 7.5 A
- ¹⁹⁾ (5∠45°)(2∠20°) is equal to
 - a. 7∠65°
 - b. 10 ∠ 25°
 - c. 10 ∠ 65°
 - d. 7 ∠ 25°
 - 1) a
 - 2) b
 - 3) + c
 - 4) d
- 20) In a series RC circuit, the voltage across the resistance is
 - 1) In phase with the source voltage
 - 2) Lagging the source voltage by 90°
 - 3) + In phase with the current
 - 4) Lagging the current by 90°
- 21) In a parallel RL circuit, there are 2 mA rms in the resistive branch and 2 mA rms in the inductive branch.

The total rms current is

- 1) 4 mA
- 2) 5.66 mA
- 3) 2 mA
- 4) + 2.83 mA
- 22) The power factor in a series RLC circuit at resonance is?
 - 1) 0
 - 2) + 1
 - 3) Dependent on R
 - 4) Dependent on L and C
- 23) The total reactance of a series RLC circuit at resonance is
 - 1) + zero
 - 2) equal to the resistance
 - 3) infinity
 - 4) capacitive
- 24) In a series RLC circuit, if inductive reactance is greater than capacitive reactance, the phase angle is?
 - 1) + Positive
 - 2) Negative
 - 3) Zero
 - 4) Depends on R only
- 25) A Thevenin ac equivalent circuit always consists of an equivalent ac voltage source and an equivalent
 - 1) Capacitive reactance
 - 2) Inductive reactance
 - 3) + Series impedance
 - 4) Parallel impedance
- 26) When can the superposition theorem be applied in multi-source circuits?
 - 1) When frequencies are different

- 2) + When frequencies are the same
- 3) Only in DC circuits
- 4) When all sources are pure resistances
- 27) A Norton ac equivalent circuit always consists of an equivalent
 - 1) ac current source in series with an equivalent impedance
 - 2) ac current source in parallel with an equivalent reactance
 - 3) + ac current source in parallel with an equivalent impedance
 - 4) ac voltage source in parallel with an equivalent impedance
- 28) To maximize coupling between two coils, they are:
 - 1) Reduced in turns for the second coil
 - 2) Supplied with lower AC frequency
 - 3) + Wound on a common core
 - 4) Spaced farther apart
- 29) A transformer is used for
 - 1) dc voltages
 - 2) + ac voltages
 - 3) both dc and ac
- 30) In the isolated transformers
 - a) $V_{Pri} > V_{Sec}$
 - b) $V_{Pri} < V_{Sec}$
 - c) $V_{Pri} = V_{Sec}$
 - d) $V_{Pri} \leq V_{Sec}$
 - 1) a
 - 2) b
 - 3) + 6
 - 4) d
- 31) If the primary winding = 100 turns & secondary winding = 400 turns, then the turn ratio (n) equals
 - 1) 1/4
 - 2) 200
 - 3) 400
 - 4) + 4
- 32) The primary winding of a transformer has 120 V AC across it. What is the secondary voltage if the turns ratio is 5?
 - 1) 24
 - 2) + 600
 - 3) 60
 - 4) 240
- 33) If the voltage on the primary winding of the transformer is 10 V DC, then the voltage of the secondary winding is:
 - 1) 10 V
 - + 0 V
 - 3) Depends on the turn's ratio
 - 4) More than 10 V
- 34) If 10 W of power are applied to the primary of an ideal transformer with a turn's ratio of 5, the power delivered to the secondary load is
 - 1) 50 W
 - 2) 0.5 W

- 3) 0W
- 4) + 10 W
- 35) When a three-phase generator is used instead of a single-phase generator, the required copper wire size:
 - 1) Increases
 - 2) + Decreases
 - 3) Remains constant
 - 4) Depends on frequency
- 36) Which of the following applications benefits most from constant load power?
 - 1) Solar power systems
 - 2) + Heavy induction motors
 - 3) Precision electronic circuits
 - 4) Fluorescent lamps
- 37) In a three-phase system, the voltages are separated by
 - 1) 90°
 - 2) 30°
 - 3) 180°
 - 4) + 120°
- 38) The phase current produced by a certain 240 V, Y-connected generator is 12 A. The corresponding line current is
 - 1) 36 A
 - 2) 4.0 A
 - 3) + 12 A
 - 4) 6.0 A
- 39) A certain Δ-connected generator produces phase voltages of 30 V. The magnitude of the line voltages is
 - 1) 10 V
 - 2) + 30 V
 - 3) 90 V
 - 4) none of these
- 40) To decrease the phase angle below 45°, the following condition must exist:
 - a) R = XC
 - b) $R < X_C$
 - c) $R > X_C$
 - d) $R = 10X_C$
 - 1) a
 - 2) b
 - 3) + c
 - 4) d
- 41) To what value must the rheostat be set in Figure (1) to make the total current 10 mA?

Figure (1)

1) - $1 k\Omega$

- 2) + 807.8Ω
- 3) 500Ω
- 4) 900Ω

42) Determine θ for the circuit in Figure (2):

- 1) 51.3°
- 2) 45°
- 3) 83.7°
- 4) + 38.7°

43) Find the resonant frequency in Figure (3):

- 1) + 734.1 KHz
- 2) 734.1 Hz
- 3) 23.2 KHz
- 4) 23.2 Hz

For the circuit in Figure (4), find the total currents in polar form.

- a) $I_{tot} = 18 \angle 37.1^{\circ} \text{ mA}$
- b) $I_{tot} = 184 \angle 70^{\circ} \text{ mA}$
- c) $I_{tot} = 184 \angle 37.1^{\circ} \text{ mA}$
- d) $I_{tot} = 1.8 \angle 37.1^{\circ} \text{ mA}$

- 1) a
- 2) ł
- + 0
- 4) d

45)

Find the impedance in Figure (5), and express it in polar form.

- a) $65 \angle 43.8^{\circ} \Omega$
- b) 162 ∠ 43.8° Ω
- c) 65 ∠ 46.3° Ω
- d) $9.6 \angle 43.8^{\circ} \Omega$

- 1) + a
- 2) b
- 3) c
- 4) d