

	قائمة الاسئلة							
(60)	المستوىالرابعالتخصص اتصالاتالزمن ثلاث ساعات درجة هذا الاختبار	هندسة موجات دقيقة - كلية الهندسة - قسم الكهرباء-						
		د. محمد الوادعي						

- (1 Mark). If a transmission line with inductive reactance of 41.97 Ω and capacitive reactance of 1132.5 Ω is operated at 1 GHz, then its phase constant is:
 - a) 0.0305
 - b) 0.3
 - c) 30.3
 - d) 0.6
 - 1) + a
 - 2) b
 - 3) c
- 4) d
- 2) (1 Mark). Transmission line is a ----- parameter network.
 - a) lumped
 - b) distributed
 - c) active
 - d) none of the mentioned
 - 1) a
 - 2) + 1
 - 3) c
 - 4) d
- (1 Mark). Which of the following is not a disadvantage of microwaves?
 - a) Higher-cost equipment
 - b) Line-of-sight transmission
 - c) Conventional components are not usable
 - d) Circuits are more difficult to analyze
 - 1) + a
 - 2) b
 - 3) c
 - 4) d

4)

(1	Mark) If the	wavelength	of a sign	al is 10	mm, then	the	wavenumber	of	the
	material whe	en a waveguio	de is filled	with tha	at material	is:			

- a) 123
- b) 345
- c) 628
- d) None of the mentioned
- 1) a
- 2) b
- + c
- 4) d
- (1 Mark) If the wave impedance of a medium is 200 Ω , then what is the relative permittivity of that medium?
 - a) 1.885
 - b) 2
 - c) 2.5
 - d) 3.553
 - 1) a
 - 2) b
 - 3) c
 - 4) + d
- 6) (1 Mark) If the wave number of a medium is 20 and loss tangent is 0.4, then the dielectric loss caused by the medium is:
 - a) 2
 - **b**) 3
 - c) 4
 - d) 6
 - 1) a
 - 2) b
 - 3) + c
 - 4) d
- $^{7)}$ (1 Mark). For TE_{10} mode, if the waveguide is filled with air and the broader dimension of the waveguide is 2 cm, then the cutoff frequency is:
 - a) 5 MHz
 - **b)** 7.5 MHz
 - c) 7.5 GHz
 - d) 5 GHz
 - 1) a
 - 2) b
 - 3) + c

4) - d

8)

(1 Mark). The lowest mode of TM wave propagation is:

- a) TM₀₀ mode
- b) TM₀₁ mode
- c) TM₁₀ mode
- d) TM₁₁ mode
- 1) a
- 2) b
- 3) c
- 4) + d

9)

(1 Mark). Ionospheric preparation is not possible for microwaves because

- a) Microwaves will be fully absorbed by the ionospheric layers
- b) There will be an abrupt scattering in all directions
- c) Microwave will penetrate through the ionospheric layers
- d) There will be dispersion of microwave energy
- 1) a
- 2) b
- + c
- 4) d

10)

(1 Mark). Shunt stubs are preferred for:

- a) Strip and microstrip lines
- b) Coplanar waveguides
- c) Circular waveguide
- d) Circulators
- 1) + a
- 2) b
- 3) c
- 4) d

11)

- (1 Mark) In a double stub tuner circuit, the load is of ----- length from the first stub.
 - a) fixed length
 - b) arbitrary length
 - c) depends on the load impedance to be matched
 - d) depends on the characteristic impedance of the transmission line
- 1) __- a
- 2) + b
- 3) c
- 4) d
- (1 Mark) A quarter wave transformer is useful for matching any load impedance to a transmission line.
 - a) True
 - b) False
 - 1) a
 - 2) + b
- (1 Mark) Major advantage of a quarter wave transformer is:
 - a) It gives proper matching
 - b) It gives high gain
 - c) Broader Bandwidth
 - d) None of the mentioned
 - 1) a
 - 2) b
 - 3) + 0
 - 4) d
- (1 Mark) Which of the following is not possible in a circular wave guide?
 - a) TE₁₀
 - b) TE₀₁
 - c) TE11
 - d) TE12
 - 1) + a
 - 2) b
 - 3) c
 - 4) 4
- (1 Mark) If the admittance and the impedance of a transmission line are 100 Ω and 50 Ω of a respectively, then value of phase constant β is:
 - a) 70.71
 - b) 50
 - c) 20
 - d) 0

- 1) 2
- 2) b
- 3) c
- 4) + d
- 16) (1 Mark) If the characteristic impedance of a transmission line is 50 Ω and reflection coefficient $\Gamma=1$, then its load impedance
 - a) 0 Ω
 - b) 50 Ω
 - c) ω Ω
 - d) Z_L is unreasonable.
 - 1) a
 - 2) b
 - + c
 - 4) d
- 17) (1 Mark) If the width of a parallel plate waveguide is 30 mm and the distance between the parallel pates is 5 mm, with an intrinsic impedance of 377Ω , then the characteristic impedance of the wave is:
 - a) 50 Ω
 - b) 62.833 Ω
 - c) 100 Ω
 - d) None of the mentioned
 - 1) a
 - 2) + b
 - 3) c
 - 4) d
- (1 Mark) For TM2 mode, if the distance between two parallel plates of a waveguide are 40 mm, then the cut off wavelength for TM2 mode is:
 - a) 20 mm
 - b) 80 mm
 - c) 40 mm
 - d) 60 mm
 - 1) a
 - 2) b
 - + c
 - 4) d
- (1 Mark) One of the most important factors to be considered in the selection of a particular matching network is:
 - a) noise component
 - b) amplification factor
 - c) bandwidth
 - d) all of the mentioned
 - 1) a
 - 2) b
 - + c
 - 4) d
- 20) (2 Marks) An 'L' network is required to match a load impedance of 40Ω to a transmission line of characteristic impedance 60Ω . The components of the L network are:
 - a) 50Ω
 - b) 48.9Ω
 - c) 28.28+j1 Ω
 - d) 28.28+j0 Ω

- 1) :
- 2) b
- 3) c
- + d
- 21) (2 Marks) A section of X-band waveguide with dimensions a = 2.286 cm and b = 1.016 cm and has perfectly conducting walls and is filled with a lossy dielectric ($\sigma_d = 367.5 \, \mu S/m$, $\epsilon_r = 2.1$, $\mu_r = 1$). Find the attenuation factor, in dB/m, for the dominant mode of propagation at a frequency of 9 GHz.
 - a) 0.48 dB/m
 - b) 0.61 dB/m
 - c) 0.697 dB/m
 - d) 0.88 dB/m
 - 1) a
 - 2) + t
 - 3) c
 - 4) d
- 22) (2 Marks) An X-band air-dielectric rectangular waveguide has brass walls ($\sigma_w = 16~MS/m$, $\mu_w = \mu_0$) with dimensions a = 2.286 cm and b = 1.016 cm. Find the dB/m of attenuation due to wall loss when the dominant mode is propagating at 9.6 GHz.
 - a) 0.67 dB/m
 - b) 0.107 dB/m
 - c) 0.214 dB/m
 - d) 0.428 dB/m
 - 1) a
 - 2) b
 - 3) + c
 - 4) d
- 23) (1 Mark) The wave impedance for a non-propagating mode in TE mode is:
 - a) K/β
 - b) Imaginary
 - c) Zero
 - d) Non-existing
 - 1) a
 - 2) + b
 - 3) c
 - 4) d
- 24) (1 Mark) The lowest mode of TE mode propagation in a circular waveguide is:
 - a) TE₀₁ mode
 - b) TE₀₀ mode
 - c) TE₁₀ mode
 - d) TE₁₁ mode
 - 1) + a
 - 2) b
 - 3) c
 - 4) d

25)

(2 Marks) Find the cutoff frequencies of the first two propagating modes of a Teflon-filled circular waveguide with a = 0.5 cm and $\epsilon_r=2.08$.

п	p'_{n1}	p'_{n2}	p'_{n3}	$p_{\kappa 1}$	p_{n2}	p_{n3}
0	3.832	7.016	10.174	2.405	5.520	8.654
1	1.841	5.331	8.536	3.832	7.016	10.174
2	3.054	6.706	9.970	5.135	8.417	11.620

- a) the first two propagating modes are TE_{01} (f_{c01} = 8.19 GHz) and TM_{01} (f_{c01} = 15.92 GHz)
- b) the first two propagating modes are TE_{11} (f_{c11} = 12.19 GHz) and TM_{10} (f_{c10} = 9.97 GHz)
- c) the first two propagating modes are TE_{11} (f_{c11} = 12.19 GHz) and TM_{01} (f_{c01} = 15.92 GHz)
- d) the first two propagating modes are TE_{10} (f_{c10} = 11.44 GHz) and TM_{10} (f_{c10} = 9.97 GHz)
- 1) a
- 2) b
- 3) +
- 4) d
- 26) (2 Marks) A Teflon-filled circular waveguide with a = 0.5 cm and ϵ_r = 2.08. If the interior of the guide is gold plated with conductivity of 4.1*10⁷ S/m, calculate the overall loss in dB for a 30 cm length operating at 14 GHz. (Hint: $\tan \delta$ = 0.0004)
 - a) attenuation = 2.07 dB
 - b) attenuation = 0.62 dB
 - c) attenuation = 0.75 dB
 - d) attenuation = 0.583 dB
 - 1) a
 - 2) + b
 - 3) c
 - 4) d
- 27) (1 Mark). The dominant waveguide mode of a coaxial line is:
 - a) TE₁₁ mode
 - b) TE₀₁ mode
 - c) TM₀₁ mode
 - d) TEM mode
 - 1) + a
 - 2) b
 - 3) c
 - 4) d
- 28) (1 Mark). If the phase velocity in a stripline is 2.4*108m/s, and the capacitance per unit length of a micro stripline is 10pF/m, then the characteristic impedance of the line is:
 - a) 50 Ω
 - b) 41.6 Ω
 - c) 100 Ω
 - d) None of the mentioned
 - 1) __- a
 - 2) + b
 - 3) c
 - 4) d
- 29)

(1	Mark).	Which	mode	of pi	ropagation	is supp	orted by	z a strip	line
----	--------	-------	------	-------	------------	---------	----------	-----------	------

- a) TEM mode
- b) TM mode
- TE mode
- d) None of the mentioned
- 1)
- 2)
- 3)
- 4) d
- 30) (2 Marks). Design an L-section matching network to match the load with an impedance

 $Z_L=100-j50~\Omega$ to 75 Ω line at a frequency of 1 GHz. (b

- a) 1^{st} sol. (L = 15 nH and C = 2.6 pF) & 2^{nd} sol. (C = 0.402 pF and L = 9.74 nH)
- b) 1st sol. (C = 0.12 pF and C = 0.26 pF) & 2nd sol. (L = 0.402 nH and L = 9.7 nH) c) 1st sol. (C = 1.22 pF and L = 2.6 nH) & 2nd sol. (L = 0.402 nH and C = 0.74 pF)
- d) 1^{st} sol. (L = 0.67 nH and C = 0.26 pF) & 2^{nd} sol. (C = 40.2 pF and C = 0.94 pF)
- 1)
- 2) b
- 3) c
- 4) d
- 31) (1 Mark). The major advantage of single stub tuning over other impedance matching techniques is:
 - a) Lumped elements are avoided
 - b) It can be fabricated as a part of transmission line media
 - c) It involves two adjustable parameters
 - d) All of the mentioned
 - 1) a
 - 2) b
 - 3) c
- 32) (1 Mark). The two adjustable parameters in single stub matching are distance'd' from the

load to the stub position, and -

- a) Length of the stub
- b) Distance of the stub from the generator
- Susceptance or reactance provided by the stub
- d) None of the mentioned
- 1) a
- 2) b
- 3)
- 33) (1 Mark). In shunt stub matching, the key parameter used for matching is:
 - a) Admittance of the line at a point
 - Admittance of the load
 - Impedance of the stub c)
 - Impedance of the load
 - 1)
 - 2) b
 - 3) c

- 4) d
- 34) (1 Mark). The major disadvantage of single stub tuning is:
 - a) it involves 2 variable parameters
 - b) complex calculation
 - c) it requires a variable length of line between the load and the stub
 - d) none of the mentioned
 - 1) a
 - 2) b
 - 3) + c
 - 4) d
- 35) (1 Mark) A quarter wave transformer is useful for matching any load impedance to a transmission line.
 - a) True
 - b) False
 - 1) a
 - 2) + b
- 36) (1 Mark) Major advantage of a quarter wave transformer is:
 - a) It gives proper matching
 - b) It gives high gain
 - c) Broader bandwidth
 - d) None of the mentioned
 - 1) a
 - 2) b
 - + 0
 - 4) d
- 37) (1 Mark) Complex load impedance can be converted to real load impedance by:
 - a) Scaling down the load impedance
 - b) By introducing an approximate length of transmission line between load and quarter wave transformer
 - c) Changing the operating wavelength
 - d) None of the mentioned
 - 1) a
 - 2) + b
 - 3) c
 - 4) d
- 38) (1 Mark) If a single section quarter wave transformer is used for impedance matching at some frequency, then the length of the matching line is:
 - a) different at different frequencies
 - b) a constant
 - c) $\lambda/2$ for other frequencies
 - d) None of the mentioned
 - 1) + a
 - 2) b
 - 3) c
 - 4) d
- 39) (1 Mark) Quarter wave transformers cannot be used for non-TEM lines for impedance matching.
 - a) True
 - b) False

4 \		
1)	+	2

- 2) b
- 3) c
- 4) d
- 40) (1 Mark) If a load of 10 Ω has to be matched to a transmission line of characteristic impedance of 50 Ω , then the characteristic impedance of the matching section of the transmission line is:
 - a) 10 Ω
 - b) 22.36 Ω
 - c) 50 Ω
 - d) 100 Ω
 - 1) a
 - 2) + b
 - 3) c
 - 4) d
- 41) (1 Mark). Which of the following are the disadvantages of microwaves?
 - a) The cost of equipment or installation is prohibitively expensive.
 - b) They are heavier and take up more room
 - c) Electromagnetic interference is possible
 - d) All of the above
 - 1) a
 - 2) b
 - 3) c
 - + d
- 42) (1 Mark). Which of the following statement is TRUE?
 - Reflection coefficient is the metric that describes the amount of reflected energy caused by Characteristic Impedance in a transmission line
 - b) Reflection coefficient is the metric that describes the amount of reflected energy caused by an impedance mismatch in a transmission line
 - 1) a
 - 2) + b
 - 3) c
 - 4) d
- 43) (1 Mark). The loss caused by signal absorption in the transmission line is known as ----
 - a) Attenuation loss.
 - b) Reflection loss.
 - c) Transmission loss.
 - d) Return loss.
 - 1) + a
 - 2) b
 - 3) c
 - 4) d
- (1 Mark) ----- is the main advantage of a microwave.
 - a) High penetration power
 - b) Moves at the speed of light
 - c) Highly directive
 - d) None of these
 - 1) a

- 2) b
- + c
- 4) d
- 45) (1 Mark) The main disadvantage of using coaxial cable for microwave signals is its
 - a) High attenuation
 - b) High sensitivity
 - c) Low distortion
 - d) Low selectivity
 - 1) + a
 - 2) b
 - 3) c
 - 4) d
- (1 Mark) Which of the following has a characteristic impedance?
 - a) Waveguides
 - b) Transmission lines
 - c) Both (a) and (b).
 - 1) a
 - 2) + b
 - 3) c
 - 4) d
- 47) (1 Mark) What is phase velocity?
 - a) The speed with which the phase of a transmission line propagates across a fixed medium is referred to as phase velocity
 - b) The speed with which the phase of a transmission line propagates across a fixed bandwidth is referred to as phase velocity
 - The speed with which the phase of a wave propagates across a medium is referred to as phase velocity
 - 1) a
 - 2) b
 - + c
 - 4) d
- (1 Mark) The electric and magnetic fields in which mode of propagation are truly perpendicular to the direction of wave propagation?
 - a) TEM (Transverse Electromagnetic Wave)
 - b) TE Transverse Electric Wave)
 - c) TM (Transverse Magnetic Wave)
 - d) Both (b) and (c).
 - 1) + a
 - 2) b
 - 3) c
 - 4) d
- 49) (1 Mark) In microwave engineering, what does the term "cutoff frequency" refer to?
 - a) The frequency at which the amplifier stops working
 - b) The frequency above which signals get distorted
 - c) The frequency at which a microwave circuit resonates
 - d) The frequency below which the waveguide can transmit signals effectively
 - 1) a
 - 2) b
 - 3) c

- d
- 50) (1 Mark) What is the typical characteristic impedance of a microstrip transmission line?
 - a) 25 ohms
 - b) 50 ohms
 - c) 75 ohms
 - d) 100 ohms
 - 1)
 - 2) b
 - 3) c
 - 4) d
- 51) (1 Mark) What is the primary advantage of using a coaxial cable in microwave systems?
 - a) It has low loss at high frequencies
 - b) It is flexible and easy to install
 - c) It is resistant to electromagnetic interference
 - d) All of the above
 - 1) a
 - 2) b
 - 3) c
 - 4) d
- (1 Mark) What is the main advantage of using a circular waveguide over a rectangular 52) waveguide?
 - a) It has lower attenuation
 - b) It is more compact
 - c) It supports multiple propagation modes
 - d) It is easier to manufacture
 - 1) a
 - 2) b
 - 3)
 - 4) d
- 53) (2 Marks). Two loads Z_1 = 50 Ω and Z_2 = 80 Ω are connected as shown in Fig.1. All lines are lossless with $Z_0 = 50 \Omega$ and have $\lambda/2$ length. Find Z_{in} of the feed line.
 - a) $Z_{in} = 27.24 \Omega$ b) $Z_{in} = 50 \Omega$

 - c) $Z_{in} = 81.25 \Omega$ d) $Z_{in} = 100 \Omega$

- 1) a
- 2) b
- 3)
- 4) d