

قائمة الاسئلة

امتحان نهاية الفصل الدراسي الأول - للعام الجامعي 1446 هـ - كلية العلوم :: جبر خطي - (202102) - المستوى الثاني -تخصص فيزياء - ك عبدالحفيظ محمد عبداالله مدابش

المصفوفة A من النوع n تكون مصفوفة ملتفة اذا حققت الشرط

$$A^2 = A \quad (1)$$

$$A^2 = O \quad (2)$$

$$A^2 = I^{-} (3)$$

في المصفوفة
$$A^P=0$$
 قيمة P التي تحقق العلاقة $A=\begin{bmatrix}2&1\\-4&-2\end{bmatrix}$ هي

في النظام الخطي المتجانس اذا كانت
$$\Delta=0$$
 فإن للنظام الخطي (4

قيمة
$$x$$
 بحيث يكون ضرب المصفوفتين $A
ightharpoonup B = A \cdot B = \begin{bmatrix} 3x & 1 \\ 8 & 17 \end{bmatrix}, B \cdot A = \begin{bmatrix} 5 & 3 \\ 4 & 6x \end{bmatrix}$ قيمة x بحيث يكون ضرب المصفوفتين $A
ightharpoonup B = A \cdot B = \begin{bmatrix} 3x & 1 \\ 8 & 17 \end{bmatrix}$

الصفحة 1 / 5

$$\begin{bmatrix} k^n & 2nk^{n-1} \\ 0 & k^n \end{bmatrix}$$

$$\begin{bmatrix} k^n & 2^n \\ 0 & k^n \end{bmatrix} - \begin{pmatrix} 2 \\ \end{pmatrix}$$

$$\begin{bmatrix} k^n & 2nk^n \\ 0 & k^n \end{bmatrix}$$
 (3)

و الأجابات خاطئة
$$f(x) = x^2 - 3x$$
 ، $A = \begin{bmatrix} 0 & -2 \\ 1 & 3 \end{bmatrix}$ فإن $f(x) = x^2 - 3x$ ، $A = \begin{bmatrix} 0 & -2 \\ 1 & 3 \end{bmatrix}$

$$\begin{bmatrix} 0 & -2 \\ 1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 10 \\ -2 & 0 \end{bmatrix} - (2)$$

$$\begin{bmatrix} -2 & -6 \\ 3 & 7 \end{bmatrix}$$
 (3)

$$|-2A^TB^{-1}|$$
 فإن $|B|=\frac{-1}{2}$ ، $|A|=-2$ وكان $|A|=-2$ فإن $|B,A$ إذا كانت $|B,A$ إذا كانت

$$\frac{2}{4}$$
 - (1)

$$\frac{4}{16} + \frac{2}{16}$$

الصفحة 2 / 5

$$\begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}^{-1}$$

$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} - (3)$$

كل الإجابات خاطئة

: تشكل المجموعة S الجزئية من فضاء المتجهات V أساساً للفضاء V اذا كانت

تولد الفضاء V ومرتبطة خطياً

+ تولد الفضاء V ومستقلة خطياً

مرتبطة خطياً و لا تولد الفضاء V (3

لا تولد الفضاء V ومستقلةة خطياً

ليكن
$$T(A) = A^{-1}$$
 , $\forall A \in M_{n \times n}$: تحويلاً خطياً معرف بالقاعدة : $T: M_{n \times n} \to M_{n \times n}$ فإن $T: T: M_{n \times n} \to M_{n \times n}$ تحويلاً خطياً .

$$\begin{vmatrix} \lambda - 1 & 0 \\ 0 & \lambda + 1 \end{vmatrix} = 0$$
 صح $\begin{vmatrix} \lambda - 1 & 0 \\ 0 & \lambda + 1 \end{vmatrix}$ هي (12)

0 & 1 (1

3 & 1

1 & 1- +

0 & 1- -(4

إذا كانت A مصفوفة من النوع (2 imes 2) فإن نوع المصفوفة AA^T هو (13)

 (2×3) -

 (2×2) -(2

 (3×2) -(3

 (3×3) +

$$B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
, $(A^T)^{-1} = B$ وإذا كانت A^T

الصفحة 3 / 5

ھو

$$\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} - (2$$

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} - (3)$$

4) - كل الاجابات خاطئة

15) حل نظام المعادلات الخطية

$$X_1 + X_2 - X_3 = 1$$

 $2X_1 - X_2 + X_3 = 2$
 $X_1 - X_2 - X_3 = -1$

$$(1-,1,1) - (1)$$

$$(1-,1-,2) - (2)$$

$$(2,2,2) - (3)$$

$$(1,1,1) + (4)$$

$$(16)$$

$$B = \begin{bmatrix} 4 & -2 \\ 0 & 1 \end{bmatrix}, A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

$$(16)$$

: هي
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$$
 هي الذاتية للمصفوفة

(18) اذا كانت القيم الذاتية للمصفوفة
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 هي $A & 1 & 3 & 1 لذاتي المتعلق بالقيمة الذاتية $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

+ (1

الصفحة 4/5

$$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -3 \end{bmatrix} - \begin{pmatrix} 3 \\ \end{pmatrix}$$

$$\mathbb{R}^2$$
 المجموعة $v_2 = (2,4)$ و $v_1 = (1,2)$ حيث $S = \{v_1, v_2\}$ تشكل أساس للفضاء (20)