

قائمة الاسئلة

امتحان نهاية الفصل الدراسي الأول - للعام الجامعي 1446 هـ - كلية العلوم :: الفيزياء الرياضية - (203106) - المستوى الثالث -تخصص

The vertices of triangle ABC have position vectors \mathbf{a} , \mathbf{b} and \mathbf{c} relative to some origin O (see the figure). Find the position vector of the centroid G of the triangle.

$$(1/3) (a+b+c)$$

$$(1/3) (a+b-c)^{-1/2}$$

$$(1/2) (a+b-c)^{-3}$$

$$(1/2) (a+b)^{-1/4}$$

if
$$\mathbf{a} = \mathbf{b} + \lambda \mathbf{c}$$
, for some scalar λ , then (2)

$$\mathbf{a} \times \mathbf{c} = \mathbf{b} \times \mathbf{c}. \quad + \quad (1$$

$$\mathbf{a} \times \mathbf{c} \neq \mathbf{b} \times \mathbf{c}$$
 - (2)

$$\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} \quad - \quad (3)$$

the area A of the parallelogram with sides
$$\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$$
 and $\mathbf{b} = 4\mathbf{i} + 5\mathbf{j} + 6\mathbf{k}$. (3)

$$\sqrt{54}$$
 + (1

$$\sqrt{44}$$
 - (2

الصفحة 1/6

the volume V of the parallelepiped with sides $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = 4\mathbf{i} + 5\mathbf{j} + 6\mathbf{k}$ and $\mathbf{c} = 7\mathbf{i} + 8\mathbf{j} + 10\mathbf{k}$.

+ (1

3

- (2

1

- (3

2

- (4

5

the radius ρ of the circle that is the intersection of the plane $\hat{\mathbf{n}} \cdot \mathbf{r} = p$ and the sphere of radius a centred on the point with position vector \mathbf{c} .

$$\sqrt{a^2-(p-\mathbf{c}\cdot\hat{\mathbf{n}})^2}$$
, (1)

$$\sqrt{a-(p-c.n)} - (2$$

$$\sqrt{(\boldsymbol{p}-\boldsymbol{c}.\boldsymbol{n})^2-\boldsymbol{a}^2} \quad - \quad (3)$$

$$\sqrt{a^2 - (p.p - c.c)} \quad - \quad (4)$$

جسم صغير كتلته m يدور حول جسم نو كتلة كبيرة m متمركزة عند نقطة الأصل. بحسب قانون تيوتن m الجذب العام، متجه الموضع للجسم m يخضع للمعادلة التفاضلية m $\frac{d^2\mathbf{r}}{dt^2} = -\frac{GMm}{r^2}\,\hat{\mathbf{r}}.$ و علية فان المتجة $\mathbf{r} \times d\mathbf{r}/dt$ يكون : -

constant of the motion. (1)

zero.

less than zero.

الصفحة 2 / 6

none of them.

A curve lying in the xy-plane is given by y = y(x), z = 0. the arc length along the curve between x = a and x = b is given by

$$\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx.$$

$$\int_{a}^{b} \sqrt{1 - \left(\frac{dy}{dx}\right)^2} \, dx. \tag{2}$$

$$\int_{a}^{b} \left(1 - \left(\frac{dy}{dx} \right)^{2} \right) dx.$$
 (3)

$$\int_{a}^{b} \left(1 + \left(\frac{dy}{dx} \right)^{2} \right) dx.$$
 (4)

In a magnetic field, field lines are curves to which the magnetic induction $\bf B$ is everywhere tangential. By evaluating $d{\bf B}/ds$, where s is the distance measured along a field line, the radius of curvature at any point on a line is given by

$$\begin{array}{c|c}
B^{3} & + & (1) \\
\hline
|\mathbf{B} \times (\mathbf{B} \cdot \nabla)\mathbf{B}| & - & (2) \\
\hline
|\mathbf{B} \times (\mathbf{B} \cdot \nabla)\mathbf{B}| & - & (3) \\
\hline
|\mathbf{V} \times \mathbf{B}| & - & (4) \\
\hline
|\mathbf{V} \times \mathbf{B}| & - & (4)
\end{array}$$

المتجهات الاتية (reciprocal) مقلوب
$$\mathbf{a}=2\mathbf{i},\ \mathbf{b}=\mathbf{j}+\mathbf{k},\ \mathbf{c}=\mathbf{i}+\mathbf{k}.$$

الصفحة 3 / 6

$$\mathbf{a}' = \frac{1}{2}(\mathbf{i} + \mathbf{j} - \mathbf{k}), \ \mathbf{b}' = \mathbf{j}, \ \mathbf{c}' = -\mathbf{j} + \mathbf{k}.$$

$$\mathbf{a}' = \frac{1}{2}(\mathbf{i} - \mathbf{k}), \ \mathbf{b}' = \mathbf{0}, \ \mathbf{c}' = -\mathbf{j} + \mathbf{k}.$$

$$\mathbf{a}' = \frac{1}{2}(\mathbf{i} - \mathbf{j}), \ \mathbf{b}' = \mathbf{j}, \ \mathbf{c}' = -\mathbf{k}.$$

none of them - (4

Write the vector $\vec{m}=(1,2,3)$ as a linear combination of the vectors: $\vec{u}=(1,0,1) \quad \vec{v}=(1,1,0) \quad \vec{w}=(0,1,1). \label{eq:vector}$

$$\vec{m} = \vec{u} + 2\vec{w}$$

$$\vec{m} = \vec{u} + 2\vec{w} - \vec{\mathbf{v}}$$

$$\vec{m} = 2\vec{w} - \vec{\mathbf{v}} \qquad (3)$$

$$\vec{m} = \vec{u} - \vec{w} \quad - \quad (4)$$

The vector $\vec{b} = \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$ is a linear combination of $\vec{v}_1, \vec{v}_2, \vec{v}_3$.

$$ec{v}_1=egin{bmatrix}1\2\3\end{bmatrix}, ec{v}_2=egin{bmatrix}3\5\1\end{bmatrix}, ec{v}_3=egin{bmatrix}0\0\8\end{bmatrix}$$
 Then $ec{b}=$

$$ec{b} = 3ec{v}_1 + 0ec{v}_2 + 0ec{v}_3$$
 (1)

$$ec{b}=3ec{v}_1+3ec{v}_2$$
 - (2

$$\vec{b} = 3\vec{v}_1 + 3\vec{v}_3$$
 (3)

$$ec{b} = 3 ec{v}_1 - 3 ec{v}_3$$
 (4)

الصفحة 4 / 6

(12

Two particles have velocities $\mathbf{v}_1 = \mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$ and $\mathbf{v}_2 = \mathbf{i} - 2\mathbf{k}$, respectively. Find the velocity \mathbf{u} of the second particle relative to the first.

جسيمان لهما سر عات $v_1 = i + 3$ و $v_2 = i - 2$ و على التوالي. سرعة الجسيم الثاني بالنسبة إلى الأول تساوي :

The tangent of the angle between the two vectors $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$ is equal to: (13 divide by the left of the tangent of the angle between the two vectors $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$ is equal to:

$$\sqrt{3}$$
 / (10 $\sqrt{2}$)

$$\sqrt{2}$$
 / (10 $\sqrt{3}$)

10
$$(\sqrt{2} / \sqrt{3})$$

(In the opposite figure). If we rotate the position vectors \mathbf{a} and \mathbf{b} so that $\mathbf{b} = \mathbf{j}$, $\mathbf{a} = \mathbf{i}$, where \mathbf{i} and \mathbf{j} are unit vectors in Cartesian coordinates. And $\lambda >> \mu$, μ/λ goes to zero.

The angle between vectors **a** and **p** is equal to:

المحقودة المعابل الخابل). إذا دورا متجها الموضع a و b بحويث اصبح b=j، a=i حيث i و i متجهات الوحدة في الأحداثيات الكارتيزية. وكانت a $a>\gamma$ a $a>\gamma$ a الأحداثيات الكارتيزية. وكانت $a>\gamma$ $a>\gamma$ $a>\gamma$ الأول المى الصفر. $a>\gamma$ الزاوية بين المتجهين a و a تساوي :

+ (1

الصفحة 5 / 6

(14

90درجة

- (2

3 - (3درجة

^{ـ) -} 45درجة

العلاقة $\mathbf{a} imes \mathbf{c} = \mathbf{b} imes \mathbf{c}$ العلاقة (15

 $\mathbf{c} \cdot \mathbf{a} - \mathbf{c} \cdot \mathbf{b} = c|\mathbf{a} - \mathbf{b}|. \tag{1}$

 $(\mathbf{b} \times \mathbf{a}) \cdot \mathbf{c}$.

 $(\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$.

 $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$. (4)