

Department: Petroleum and Natural Gas Engineering

Course Specification of: Petroleum Reservoir Engineering 2

I.	General information about the	he course				
1	Course Title		Petroleum	Reservoir Engineerir	ng 2	
1	Course Thie		2	هندسة مكامن		
2	Course Code and Number		P	NGE 342		
		Credit Hours Total				
3	Credit Hours	Theoretical Practical Seminar/Tutorial Training				
		2		1		3
4	Study Level and Semester	Level Three – Second Semester				
5	Pre-requisites (if any)			PNGE 341		
6	Co-requisites (if any)			N.A.		
7	Program (s) in which the course	Petroleum and Natural Gas Engineering				
	is offered			T 1' 1		
8	Language of teaching the course			English		
9	Study System	Semester wise				
10	Location of teaching the course	Faculty of Petroleum and Natural Resources				
11	Prepared by		Dr. Kha	led Saeed Ba-Jaalah		
12	Date of Approval					

II.Course Description:

The course provides students with the classifications and drive mechanisms of oil reservoirs and the basic methods for estimating the oil reserves. Topics include introduction of water influx. Water influx models. Saturated oil reservoirs. Predicting oil reservoir performance. Coning in vertical and horizontal wells. Decline-curve analysis. Through this course student well be do tutorials to estimate oil reserves and predicting future production using different methods and evaluating the coning problem in vertical and horizontal wells using three categories of correlation.

III. Course Intended Learning Outcomes (CILOs):				
After completing the course, the student will be able to:				
a1.	Classify reservoir-aquifer systems on the basis of degree of pressure maintenance, flow			
	regimes, outer boundary conditions, and flow geometries.			
b1.	Estimate the water and gas coning behavior by using the theoretical analysis of coning and			
	many of the practical solutions.			

Prepared by Assoc.Prof. Adel Al-Matary Quality Assurance Unit Assoc.Prof. Adel Al-Matary Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

b2.	Perform water influx calculations by various models and incorporate in material balance
	equation analysis.
c1.	Calculate the initial oil in place and the oil recovery for volumetric and water-drive of
	saturated oil reservoirs.
c2.	Predict oil reservoir performance as a function of declining reservoir pressure and time-
	production phase.
c3.	Use decline curves to estimate oil reserves and performance prediction of oil reservoirs.
1	

IV	. Alignment of CILOs (Course Intended	l Lea	rning Outcomes) to PILOs (Program
	Intended Learning Outcomes) :		
	Course Intended Learning Outcomes]	Program Intended Learning Outcomes
a1.	Classify reservoir-aquifer systems on the basis of degree of pressure maintenance, flow regimes, outer boundary conditions, and flow geometries.	A1	Demonstrate the concepts of basic science and mathematics related to field of petroleum engineering
b1.	Estimate the water and gas coning behavior by using the theoretical analysis of coning and many of the practical solutions.	B1	Use the principles of engineering in developing solutions to practical petroleum engineering and select appropriate computer software for modeling
b2.	Perform water influx calculations by various models and incorporate in material balance equation analysis.		1 0
c1.	Calculate the initial oil in place and the oil recovery for volumetric and water-drive of saturated oil reservoirs.	C1	Carry out special engineering design in all petroleum engineering projects.
c2.	Predict oil reservoir performance as a function of declining reservoir pressure and time-production phase.		
c3.	Use decline curves to estimate oil reserves and performance prediction of oil reservoirs.	C3	Deal with the high level of uncertainty in definition and solution of petroleum reservoir problems.

V. Alignment of CILOs to Teaching and Assessment Strategies					
First: Alignment of Knowledge and Unders	First: Alignment of Knowledge and Understanding CILOs				
Knowledge and Understanding CILOs Teaching Strategies Assessment Strategies					

Quality Assurance Unit Assoc.Prof. Adel Al-Matary Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

الجمهورية اليمنية وزارة التعليم العالمي والبحث العلمي جـــــامعة صــــــــــعاء كلية البترول والموارد الطبيعية

a1 -	Classify reservoir-aqu the basis of degre maintenance, flow boundary condition geometries.	e of pressure regimes, outer	- Discussion	adings	 Quiz Oral quest Participation students Examination 	on of
Secon	d: Alignment of Intell	ectual Skills CI	LOs			
	Intellectual Skills (CILOs	Teaching Stra	tegies	Assessment	Strategies
b1 -	Estimate the water a behavior by using analysis of coning an practical solutions.	the theoretical	 Lecture Tutorial Discussion 		- Quiz - Home wo - Examinat	
b2 -	Perform water influx various models and material balance equa	incorporate in	- Problem solvin	g		
Third	: Alignment of Profes	sional and Prac	tical Skills CILOs			
Prof	essional and Practical	Skills CILOs	Teaching Stra	tegies	Assessment	Strategies
c1- c2-	Calculate the initian and the oil recovery and water-drive or reservoirs. Predict oil reservoir as a function of dec	for volumetric f saturated oil ir performance lining reservoir	 Lecture Tutorial Discussion Problem solving 		- Quiz - Home work - Examinations	
с3-	pressure and the phase. Use decline curves reserves and prediction of oil res	performance				
F	4L Alt					
	th: Alignment of Tran Insferable (General) S		Teaching Strat	egies	Assessment	Strategies
	· · ·			8-**		
	Course Content:					
	. Theoretical Aspe		ppics List	Numbe of Weel		(CILOs)

Prepared by Assoc.Prof. Adel Al-Matary Quality Assurance Unit Assoc.Prof. Adel Al-Matary Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

الجمهورية اليمنيية وزارة التعليم العالي والبحث العلمي جـــــامعة صـــــنعاء كلية البترول والموارد الطبيعية

		 commonly classified on the basis of: ✓ Degree of pressure maintenance ✓ Flow regimes ✓ Outer boundary conditions ✓ Flow geometries 			
		 Pot aquifer Schilthuis' steady-state Hurst's modified steady-state 	1	2	
2	Water Influx Models	 The Van Everdingen-Hurst unsteady-state Edge-water drive Bottom-water drive 	1	2	a1, b1
		Fetkovich's methodRadial aquiferLinear aquifer	1	2	
		 Instantaneous Gas-Oil Ratio Oil saturation adjustment for: water influx gas-cap expansion combination drive shrinking gas cap 	1	2	
3	Predicting Oil Reservoir Performance	- Estimate cumulative oil production between the initial and bubble-point pressures	1	2	b1, b2, C2
		 Predict the performance of solution-gas-drive reservoirs, including: Tracy's method Muskat's method Tarner's method 	1	2	
4	Mid-term Exam		1	2	a1,b1,b2,c2
5	Coning in vertical wells	 Introduction of gas and water coning Vertical well critical rate correlations. 	1	2	
5		 Breakthrough time in vertical Wells. Well performance calculations after Breakthrough. 	1	2	a1,b1,b2

Prepared by Assoc.Prof. Adel Al-Matary Quality Assurance Unit Assoc.Prof. Adel Al-Matary Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

الجمهوريــة اليمنــية وزارة التعليم العالـي والبحث العلمي جـــــامعة صـــــنعاء كلية البترول والموارد الطبيعية

6	Coning in horizontal wells	 Horizontal well critical rate correlations. Horizontal well breakthrough time. 	1	2	a1,b1,b2
7	Saturated oil reservoirs	Material-balance plots.Volatile-Oil Reservoirs	1	2	c1,c2
8	Decline-Curve Analysis	 Parameter Estimation for Exponential decline. Parameter Estimation for Harmonic decline. 	1	2	c1,c2,c3
		- Parameter Estimation for Hyperbolic decline.	1	2	
	Number of Weeks /and Contact Hours Per Semester		14	28	

B. Practical Aspect (if any)					
Order	Practical / Exercises/ Tutorials topics	Number of Weeks	Contact Hours	Course ILOs	
1	Calculate water influx by: Pot aquifer Schilthuis' steady-state Hurst's modified steady-state Hurst's modified steady-state Edge-water drive Bottom-water drive Fetkovich's method Radial aquifer Linear aquifer	2	4	b1,b2	
2	Estimate cumulative oil production between the initial and bubble-point pressures.	1	2	b1,b2	
3	Predict the performance of solution-gas-drive reservoirs by: -Tracy's method -Muskat's method -Tarner's method	2	4	b1,b2,c2	
4	 Calculate critical oil flow rate in vertical Wells. Calculate Breakthrough time in vertical Wells. Well performance calculations after Breakthrough. 	2	4	b1,b2	
Dro	enared by Quality Assurance Unit Dean of the Fac	ulty	Dean of the I	Davalonment	

Prepared by Assoc.Prof. Adel Al-Matary Quality Assurance Unit Assoc.Prof. Adel Al-Matary Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

5	 Calculate critical oil flow rate in horizontal Wells. Calculate Breakthrough time in horizontal Wells. 	2	4	b1,b2
6	Calculate the initial oil in place and the oil recovery for saturated oil reservoirs by: - Material balance method - Material balance plots	2	4	c1,c2
7	Estimate oil reserves and predicting future production by: -Exponential decline -Harmonic decline -Hyperbolic decline	2	4	c1,c2,c3
8	Practical Exam	1	2	b1,b2,c1,c2,c3
Num	ber of Weeks /and Contact Hours Per Semester	14	28	

VII. Teaching Strategies:

- 1. Discussion
- 2. Independent readings
- 3. Lecture
- 4. Problem solving
- 5. Tutorial
- 6. Videos

VIII. Tasks and Assignments :					
No	Assignments/ Tasks	Type of Assignment	Mark	Week Due	CILOs (symbols)
1	Exercises & Home works	personal	15	By-weekly basis	b1,b2,c1,c2 ,c3
	إجمالي الدرجة Total Score		15		

IX	IX. Learning Assessment :					
No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment	CILOs (symbols)	
1	Exercises & Home works	By-weekly basis	15	10 %	b1,b2,c1,c2,c3	
2	Quiz (1)	W6	5	3.3 %	a1,b1,b2,c2	

Prepared by Assoc.Prof. Adel Al-Matary Quality Assurance Unit Assoc.Prof. Adel Al-Matary Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

3	Midterm Exam	W8	25	16.7 %	a1,b1,b2,c2
4	Quiz (2)	W12	5	3.3 %	a1,b1,b2,c2
5	Final Exam (practical)	W 15	30	20 %	b1,b2,c1,c2,c3
6	Final Exam (theoretical)	W16	70	46.7 %	a1,b1,b2,c1,c2,c3
	Total		150	100.00%	

X. Learning Resources :

1- Required Textbook(s) :

1. Ahmed, T., 2010, Reservoir Engineering Handbook, 4th Edition, ELSEVIER Inc.

2. Towler, B. F., 2002, Fundamental Principles of Reservoir Engineering, SPE, vol 8.

2- Essential References :

- 1. Craft, B. C., and Hawkins M., 1991, Applied Petroleum Reservoir Engineering, Prentice Hall, New Jersey.
- 2. Dake, L. D., 1978, Fundamentals of Reservoir Engineering, Elsevier.

3- Electronic Materials and Web Sites etc. :

- 1. Sites of society petroleum engineers. https://www.spe.org/en/
- 2. Journal of Petroleum Science and Engineering.

https://www.journals.elsevier.com/journal-of-petroleum-science-and-engineering

XI. **Course Policies :** 1 **Class Attendance:** A student should attend not less than 75 % of total hours of the subject, otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again. 2 Tardy: For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent. 3 **Exam Attendance/Punctuality:** A student should attend the exam on time. He/she is permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam.

4 Assignments & Projects:

In general one assignment is given to the students after each chapter, the student has to

	ne FacultyDean of the Developmentof. Bassim& Quality Assurance CenterirbashAssoc.Prof. Huda Al-Emad
--	---

	submit all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating:
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he/she will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university or according to the university roles.
7	Other policies:
	 Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room. Mobile phones are not allowed in class during the examination. Lecture notes and assignments might be given directly to students using soft or hard copy.

Prepared by Assoc.Prof. Adel Al-Matary Quality Assurance Unit Assoc.Prof. Adel Al-Matary Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

Department: Petroleum and Natural Gas Engineering

Academic Year: 2019 – 2020

Course Plan (Syllabus): Petroleum Reservoir Engineering 2

I. Information about Faculty Member Responsible for the Course :							
Name	Dr. Khaled Saeed Ba-Jaalah	Of	fice H	ours			
Location &Telephone No.	Hadhramout Univ. 701915823	SAT	SU N	MO N	TUE	WED	THU
E-mail	kbajaalah@hotmail.com						

	II. General information about the course:					
1	Course Title		Petroleum Reservoir Engineering 2			
			2	هندسة مكامن		
2	Course Code and		Р	NGE 342		
	Number					
			Cred	it Hours		Total
3	Credit Hours	Theoretical	Practical	Seminar/Tutorial	Training	10141
		2		1		3
4	Study Level and Semester	Level Three – Second Semester				
5	Pre-requisites (if any)			PNGE 341		
6	Co-requisites (if any)			N.A.		
7	Program (s) in which the	F	etroleum an	d Natural Gas Engine	eering	
'	course is offered					
8	Language of teaching the	English				
0	course					
9	Location of teaching the	Faculty of Petroleum and Natural Resources				
"	course					
	III. Course Description:					

The course provides students with the classifications and drive mechanisms of oil reservoirs and the basic methods for estimating the oil reserves. Topics include introduction of water influx. Water influx models. Saturated oil reservoirs. Predicting oil reservoir performance. Coning in vertical and horizontal wells. Decline-curve analysis. Through this course student well be do tutorials to estimate oil reserves and predicting future production using different methods and evaluating the coning problem in vertical and horizontal wells using three categories of correlation.

Prepared by Assoc.Prof. Adel Al-Matary Quality Assurance Unit Assoc.Prof. Adel Al-Matary Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

IV. Course Intended Learning Outcomes (CILOs):

After completing the course, the student will be able to:

11100	completing the course, the statent will be take to
a1.	Classify reservoir-aquifer systems on the basis of degree of pressure maintenance, flow
	regimes, outer boundary conditions, and flow geometries.
b1.	Estimate the water and gas coning behavior by using the theoretical analysis of coning and
	many of the practical solutions.
b2.	Perform water influx calculations by various models and incorporate in material balance
	equation analysis.
c1.	Calculate the initial oil in place and the oil recovery for volumetric and water-drive of
	saturated oil reservoirs.
c2.	Predict oil reservoir performance as a function of declining reservoir pressure and time-
	production phase.
c3.	Use decline curves to estimate oil reserves and performance prediction of oil reservoirs.

V. Course Content:				
A. T	heoretical Aspect:			
Order	Topic List / Units	Sub Topics List	Number of Weeks	Contact Hours
1	Introduction of Water Influx	 Introduction Reservoir-aquifer systems are commonly classified on the basis of: ✓ Degree of pressure maintenance ✓ Flow regimes ✓ Outer boundary conditions ✓ Flow geometries 	1	2
		 Pot aquifer Schilthuis' steady-state Hurst's modified steady-state 	1	2
2	Water Influx Models	 The Van Everdingen-Hurst unsteady- state Edge-water drive Bottom-water drive 	1	2
		 Fetkovich's method Radial aquifer Linear aquifer 	1	2

Prepared by Assoc.Prof. Adel Al-Matary Quality Assurance Unit Assoc.Prof. Adel Al-Matary Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

		 Instantaneous Gas-Oil Ratio Oil saturation adjustment for: water influx gas-cap expansion combination drive shrinking gas cap 	1	2
3	Predicting Oil Reservoir Performance	- Estimate cumulative oil production between the initial and bubble-point pressures	1	2
		 Predict the performance of solution-gas-drive reservoirs, including: Tracy's method Muskat's method Tarner's method 	1	2
4	Mid-term Exam		1	2
5	Coning in vertical	 Introduction of gas and water coning Vertical well critical rate correlations. 	1	2
5	wells	 Breakthrough time in vertical Wells. Well performance calculations after Breakthrough. 	1	2
6	Coning in horizontal wells	 Horizontal well critical rate correlations. Horizontal well breakthrough time. 	1	2
7	Saturated oil reservoirs	Material-balance plots.Volatile-Oil Reservoirs	1	2
8	Decline-Curve Analysis	 Parameter Estimation for Exponential decline. Parameter Estimation for Harmonic decline. 	1	2
		- Parameter Estimation for Hyperbolic decline.	1	2
Number of Weeks /and Contact Hours Per Semester		14	28	

B. Practical Aspect (if any)

Prepared by Assoc.Prof. Adel Al-Matary Quality Assurance Unit Assoc.Prof. Adel Al-Matary

Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

Order	Practical / Exercises/ Tutorials topics	Number of Weeks	Contact Hours
1	Calculate water influx by: Pot aquifer Schilthuis' steady-state Hurst's modified steady-state The Van Everdingen-Hurst unsteady-state Edge-water drive Bottom-water drive Fetkovich's method Radial aquifer Linear aquifer	2	4
2	Estimate cumulative oil production between the initial and bubble-point pressures.	1	2
3	Predict the performance of solution-gas-drive reservoirs by: -Tracy's method -Muskat's method -Tarner's method	2	4
4	 Calculate critical oil flow rate in vertical Wells. Calculate Breakthrough time in vertical Wells. Well performance calculations after Breakthrough. 	2	4
5	 Calculate critical oil flow rate in horizontal Wells. Calculate Breakthrough time in horizontal Wells. 	2	4
6	Calculate the initial oil in place and the oil recovery for saturated oil reservoirs by: - Material balance method - Material balance plots	2	4
7	Estimate oil reserves and predicting future production by: -Exponential decline -Harmonic decline -Hyperbolic decline	2	4
8	Practical Exam	1	2
N	umber of Weeks /and Contact Hours Per Semester	14	28

VI. Teaching Strategies:

- 1. Discussion
- 2. Independent readings
- 3. Lecture

Prepared by Assoc.Prof. Adel Al-Matary Quality Assurance Unit Assoc.Prof. Adel Al-Matary

Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

- Problem solving
 Tutorial
- Videos 6.

VI	I. Tasks and Assignments :			
No	Assignments/ Tasks	Type of Assignment	Mark	Week Due
1	Exercises & Home works	personal	5	By-weekly basis
	إجمالي الدرجة Total Score		5	

VI	II. Learning Assessment :			
No.	Assessment Tasks	Week due	Mark	Proportion of Final Assessment
1	Exercises & Home works	By-weekly basis	15	10 %
2	Quiz (1)	W6	5	3.3 %
3	Midterm Exam	W8	25	16.7 %
4	Quiz (2)	W12	5	3.3 %
5	Final Exam (practical)	W 15	30	20 %
6	Final Exam (theoretical)	W16	70	46.7 %
	Total		150	%100

IX. Learning Resources :
1- Required Textbook(s) :
1. Ahmed, T., 2010, Reservoir Engineering Handbook, 4th Edition, ELSEVIER Inc.
2. Towler, B. F., 2002, Fundamental Principles of Reservoir Engineering, SPE, vol 8.
2- Essential References :
 Craft, B. C., and Hawkins M., 1991, Applied Petroleum Reservoir Engineering, Prentice Hall, New Jersey.
2. Dake, L. D., 1978, Fundamentals of Reservoir Engineering, Elsevier.
3- Electronic Materials and Web Sites etc. :
1. Sites of society petroleum engineers. <u>https://www.spe.org/en/</u>
2. Journal of Petroleum Science and Engineering.

Prepared by	Quality Assurance Unit	Dean of the Faculty	Dean of the Development
Assoc.Prof. Adel Al-	Assoc.Prof. Adel Al-Matary	Assoc.Prof. Bassim	& Quality Assurance Center
Matary		AlKhirbash	Assoc.Prof. Huda Al-Emad

https:/	/www.journals.elsevier.com/journal-of-petroleum-science-and-engineering
X.	Course Policies :
1	Class Attendance:
	A student should attend not less than 75 % of total hours of the subject, otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.
2	Tardy:
	For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality:
	A student should attend the exam on time. He/she is permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam.
4	Assignments & Projects:
	In general one assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating:
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he/she will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university or according to the university roles.
7	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed,
	otherwise the student will be asked to leave the lecture room.Mobile phones are not allowed in class during the examination.
	 Involue phones are not anowed in class during the examination. Lecture notes and assignments might be given directly to students using soft or hard copy.

Quality Assurance Unit Assoc.Prof. Adel Al-Matary Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

هندسة النفط والغاز الطبيعي Petroleum and Natural Gas Engineering

قسم/ برنامج Department:

مواصفات مقرر: تقييم المكامن Course Specification of: Formation Evaluation

G	المعلومات العامة عن المقرر General information about the course					
.1	اسم المقرر Course Title	تقييم المكامن Formation Evaluation				
.2	رمز المقرر ورقمه Course Code and Number		PNGE 344			
			Credit Hou	الساعات المعتمدة Irs		الإجمالي
.3	الساعات المعتمدة للمقرر Credit Hours	محاضر ات Lecture	عملي Practical	سمنار/تمارین Seminar/Tutorial	تدريب Training	رم جلالي Total
		2	1	-	-	3
.4	المستوى والفصل الدراسي Study Level and Semester	3 rd level, 2 nd semester				
.5	المتطلبات السابقة المقرر (إن وجدت) Pre-requisites (if any)	PNGE 343				
.6	المتطلبات المصاحبة (إن وجدت) Co-requisites (if any)	-				
.7	البرنامج الذي يدرس له المقرر Program (s) in which the course is offered	Bachelor of Petroleum and Natural Gas Engineering				
.8	لغة تدريس المقرر Language of teaching the course	English/	Arabic			
.9	نظام الدراسة Study System	Semesters				
.10	مكان تدريس المقرر Location of teaching the course	Faculty of Petroleum and Natural Resources				
.11	اسم معد(و) مواصفات المقرر Prepared by	Assoc.Prof. Adel Al-Matary				
.12	تاريخ اعتماد مجلس الجامعة Date of Approval	2020				

ر بالنجليزية وصف المقرر ر بالانجليزية وصف المقرر ر بالانجليزية وصف المقرر ر بالانجليزية The purpose of this course is to provide the student with a working knowledge of the current methodologies used in geological description/analysis, formation evaluation (the analysis/interpretation of well log data). Teach student the current methodologies used in Interpretation and analysis of well logging data. Petrophysics and formation evaluation by wireline logging as well as core	
a working knowledge of the current methodologies used in geological description/analysis, formation evaluation (the analysis/interpretation of well log data). Teach student the current methodologies used in Interpretation and analysis of well logging data. Petrophysics and	وصف
analysis comprise a workflow central to exploration and production in the petroleum industry. This is a core skill	

Prepared by Assoc.Prof. Adel Al-Matary Quality Assurance Unit Assoc.Prof. Adel Al-Matary Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

set for all petroleum engineers.

С	مخرجات تعلم المقرر (CILOs) مخرجات تعلم المقرر (Course Intended Learning Outcomes				
After	completing the course, the student will be able to:	بعد الانتهاء من دراسة المقرر سوف يكون الطالب قادرا على أن:			
a1	Demonstrate the current methodologies used in Interpretation and analysis of well logging data.	- a1			
a2	identify the lithology, depositional environment of subsurface strata.	- a2			
b1	determine formation lithology through logs like S.P, G.R etc. and also depositional environment with the help of Gamma rays spectroscopy and Dip-meter tools.	-b1			
b2	determine physical properties of the subsurface, strata like resistivity, porosity, thickness etc. through tools like laterolog, induction, density, neutron, etc.	- b2			
c1	calculate the porosity, permeability, thickness of different interesting layers in a well.	- c1			
c2	Calculate finally, the hydrocarbon saturation in different reservoir rocks at the well site itself.	- c2			
c3	estimate hydrocarbons reserve in a particular block.	- c3			
d1	Make a successful report clearly on the formation evaluation and well log analysis	- d1			

Alignn	مواعمة مخرجات تعلم المقرر مع مخرجات التعلم للبرنامج: Alignment of CILOs (Course Intended Learning Outcomes) to PILOs (Program Intended Learning Outcomes)				
	مخرجات التعلم المقصودة من المقرر		مخرجات التعلم المقصودة من البرنامج		
	(Course Intended Learning Outcomes)	(Program Intended Learning Outcomes) (تكتب جميع مخر جات البرنامج كما هي ر مزا ونصا)			
a1	Demonstrate the current methodologies used in				
	Interpretation and analysis of well logging	A1			
	data.				
a2	identify the lithology, depositional environment	A3			
	of subsurface strata.	AJ			
b1	determine formation lithology through logs like	B2			
	S.P, G.R etc. and also depositional environment	D2			

Prepared by Assoc.Prof. Adel Al-Matary Quality Assurance Unit Assoc.Prof. Adel Al-Matary Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

	with the help of Gamma rays spectroscopy and		
	Dip-meter tools.		
b2	determine physical properties of the subsurface, strata like resistivity, porosity, thickness etc. through tools like laterolog, induction, density, neutron, etc.	B2	
c1	calculate the porosity, permeability, thickness of different interesting layers in a well.	C2	
c2	Calculate finally, the hydrocarbon saturation in different reservoir rocks at the well site itself.	C2	
c3	estimate hydrocarbons reserve in a particular block.	C3	
d1	Make a successful report clearly on the formation evaluation and well log analysis	D3	

Alignn	مواعمة مخرجات التعلم باستراتيجيات التعليم والتعلم والتقويم Alignment of CILOs to Teaching and Assessment Strategies					
First:	ولا: مواءمة مخرجات تعلم المقرر (المعارف والفهم) باستراتيجية التعليم والتعلم والتقويم: First: Alignment of Knowledge and Understanding CILOs					
	مخرجات المقرر/ المعرفة والفهم Knowledge and Understanding CILOs	استراتيجية التعليم والتعلم Teaching Strategies	, -	استراتيجية الت ment Strategies		
a1 -	Demonstrate the current methodologies used in Interpretation and analysis of well logging data.	-Interactive Lectures - Discussion	Oral p	inations, presentation		
a2 -	identify the lithology, depositional environment of subsurface strata.	- Demonstration	Achievement tests			
Second	ليا: مواعمة مخرجات تعلم المقرر (المهارات الذهنية) باستراتيجية التدريس والتقويم: Second: Alignment of Intellectual Skills CILOs					
	مخرجات المقرر/ المهارات الذهنية	تيجية التعليم والتعلم	استرا	استراتيجية		
Intellectual Skills CILOs		Teaching Strate	gies	التقويم Assessment Strategies		
b1 -	determine formation lithology through logs like S.P, G.R etc. and also depositional environment with the help of Gamma rays spectroscopy and Dip-meter tools.	Discussion Demonstration Brain storm Problem solving		Essay test, Laboratory		

Quality Assurance Unit Assoc.Prof. Adel Al-Matary Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

ىية ة الدمذ الحمهور ى والبحث العلم م العا وزارة التعلي كلية البترول والموارد الطب

b2 -	determine physical properties of the subsurface, strata like resistivity, porosity, thickness etc. through tools like laterolog, induction, density, neutron, etc.		Performance
	ات المهنية والعملية) باستراتيجية التدريس والتقويم:	مخرجات تعلم المقرر (المهار	ثالثا: مواءمة

	Third: Alignment of Professional and Practical Skills CILOs استراتيجية التقويم استراتيجية التعليم والتعلم محرجات المقرر/ المهارات المهنية والعملية						
Professional and Practical Skills CILOs		Teaching Strategies	Assessment Strategies				
c1-	calculate the porosity, permeability, thickness of different interesting layers in a well.	Tutorials & practical	Achievement tests				
c2 -	Calculate finally, the hydrocarbon saturation in different reservoir rocks at the well site itself.	classes, Case study, Computer based teaching	Chart Drawing				
c3-	estimate hydrocarbons reserve in a particular block.		practical exams				

Fourt	Fourth: Alignment of Transferable (General) Skills CILOs					
	مخرجات المقرر Transferable (General) Skills CILOs	استراتيجية التعليم والتعلم Teaching Strategies	استراتيجية التقويم Assessment Strategies			
d1-	Make a successful report clearly on the formation evaluation and well log analysis	Small group working Seminars Case Study Method	Achievement tests Presentation			

العا. مواعمة مخرجات تعلم المقرر (المعارات العامة) باستراتيجية التدريس والتقويد.

محتوى المقرر Course Content

موضوعات الجانب النظري Theoretical Aspect					
الموضوعات الرئيسة/ الموضوعات الفرعية الوحدات الرئيسة/ Order Topic List / Sub Topics List Units		عدد الأسابيع Number of Weeks	الساعات الفعلية Contact Hours	رموز مخرجات التعلم للمقرر (CILOs)	
1 Formation Properties Rock Formations Petrophysical Properties		1	2	a2,b2	
2 Open hole logging application of caliper tool. Calculation of salinity of formation water		1	2	a1,b1,b2	
3 SP Logging Origin of SP, uses of SP log - Shaliness -Factors influence SP log.		- Shaliness	1	2	a1,b1,b2
4	Gamma ray log	Uses of gamma ray log - Determination of Shaliness of formation-	1	2	a1,b1,b2
		uality Assurance UnitDean of the Facultyoc.Prof. Adel Al-MataryAssoc.Prof. Bassim		of the Deve lity Assura	1

		API counts		1	1
		Natural Spectral Gamma ray log			
		- Environmental corrections			1
5	Density log:	-Porosity determination	1	2	a1,b1,b2
J	Density log.	-Tool calibration, Litho density log.	1	2	a1,01,02
		Principle and application of neutron tool.			
6	Neutron log:	Porosity determination.	1	2	a1,b1,b2
		application of sonic log			
		-Bore hole compensation			
		-Determination of primary and secondary			
6	Sonic log:	porosity,	1	2	a1,b1,b2
		determination of mechanical properties of			
		rock, elastic constants, fractures etc.			
		Focused resistivity log			
		- Advantages of focused resistivity tools			a1,b1,b2
8	Resistivity log:	over conventional resistivity tools.	1	2	
		Determination of true resistivity (Rt) of the		1	
		formation			
		Criteria for selection of induction			
		and lateral logging tool, Determination of			
9	Induction log:	true resistivity (Rt) of the formation	1	2	a1,b1,b2
		-Resistivity index			
		Archie's equation			
	Cased hole logging:	 Completion and Cement Bond Logs 			
10		Formation Testers	1	2	a1,b1,b2,d1
		Production Logs and Well Performance			
		Mud logging			
	Direct Methods:	•Routine Core Analysis			
11		Special Core Analysis	1	2	a1,b1,b2,d1
		Mechanical Properties			
		Digital Core Analysis			
	Interpretation:	Quick look interpretation			a1 b1 b2
		- Cross plots. Neutron- Density, Sonic-			
12		Density, Sonic- Neutron cross plots	1	2	a1,b1,b2, c1,c2,c3,d1
		-Hingle plot-Mid plot Correlation			c1,c2,c3,d1
		- Hydrocarbon reserve estimate.			
		Dip meter log-Formation tester	L	<u> </u>	<u> </u>
		-Nuclear magnetic resonance log &			
		Scanner logs (Sonic scanner, MR scanner			
	Borehole	Rt scanner).			
13	Imaging and Dipmeter Logs	Calculating the dip of the formations,	1	2	a1, d1
		collection of fluid samples from wells for			
		confirmation of			
		log interpretation			
14	Synthesis	Logs and Formation Evaluation: Putting it		1	
		All Together	1	2	
		Formation Evaluation and Petrophysics of	1	2	All CILO
		Shale and Tight Reservoirs			
		Duality Assurance Unit Dean of the Faculty		of the Dev	
		oc.Prof. Adel Al-Matary Assoc.Prof. Bassim		ality Assura 2.Prof. Huda	
	Matary	AlKhirbash	Assoc		a AI-EIIIdu

Well Log Interpretation: Case Study			
عدد الأسابيع والساعات الفعلية Number of Weeks /and Contact Hours Per Semester	14	28	

Prac	الموضوعات العملية (إن وجدت) (الموضوعات العملية العملية العملية (إن وجدت)				
الرقم Order	التجارب العملية/ التمارين / تدريبات Practical / Exercises/ Tutorials topics	عدد الأسابيع Number of Weeks	الساعات الفعلية Contact Hours	رموز مخرجات التعلم Course ILOs	
1	calculation of <i>Vshale</i> , determine gamma ray response for common rocks	1	2	b1, b2, c1, c2, c3, d1	
2	calculation of <i>Vshale</i> , calculation of formation water resistivity Rw from SP log	2	4	b1, b2, c1, c2, c3, d1	
3	calculate sonic porosity	1	2	b1, b2, c1, c2, c3, d1	
4	calculate density porosity	1	2	b1, b2, c1, c2, c3, d1	
5	calculate neutron porosity	1	2	b1, b2, c1, c2, c3, d1	
6	Calculation of Rt – tornedo chart	2	4	b1, b2, c1, c2, c3, d1	
7	Techniques to calculate water saturation	2	4	b1, b2, c1, c2, c3, d1	
8	Comprehensive interpretation in well logging	2	4	b1, b2, c1, c2, c3, d1	
9	Case studies	1	2	All CILO	
اجمالي الأسابيع والساعات الفعلية Number of Weeks /and Contact Hours Per Semester		13	26		

استراتيجيات التعليم والتعلم Strategies
Interactive Lectures
 Discussion
 Demonstration
 Brain storm
 Problem solving
 Tutorials & practical classes,
 Case study,
 Computer based teaching

Quality Assurance Unit Assoc.Prof. Adel Al-Matary Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

r -	الأنشطة والتكليفات Tasks and Assignments				
م No	التكليف/ الواجب Assignments/ Tasks	نوع التكليف (فردي/ تعاوني)	الدرجة المستحقة Mark	أسبوع التنفيذ Week Due	خرجات التعلم CILOs (symbols)
1	n/a				
	إجمالي الدرجة Total Score				

	تقييم التعلم Learning Assessment					
الرقم No.	أنشطة التقييم Assessment Tasks	أسوع التقييم Week due	الدرجة Mark	نسبة الدرجة إلى الدرجة النهائية Proportion of Final Assessment	مخرجات التعلم CILOs (symbols)	
1	Report	Quarter	5	3.4%	d3	
2	Participation	Weekly	10	6.6%	all	
3	Quizzes	End of a	10	6.6%	all	
4	Mid-Term (theoretical)	Week 8	15	10%	b21,b2.2.c1.c2.c3	
5	Mid-Term (practical)	Week 6	15	10%	b21,b2.2.c1.c2.c3	
6	Final Exam (practical)	Week 12	25	16.7%	all	
7	Final Exam (theoretical)	Week 16	70	46.7%	all	
	الإجمالي Total			%100		

مصادر التعلم Learning Resources

توثق المراجع حسب نظام APA (اسم المؤلف، سنة النشر، اسم الكتاب، دار النُّشر، بلد النشر).

- Required Textbook(s) (الا تزيد عن مرجعين) المراجع الرئيسة (الا تزيد عن مرجعين)
 - 1. Toby Darling (2005) Well Logging and Formation Evaluation, (Gulf Professional/Elsevier,
 - 2. George B. Asquith and Daniel Krygowski (2004) Basic Well Log Analysis. AAPG,
- المراجع المساندة Essential References
- 1. Formation Evaluation, Edward J. Lynch, Harper & Row, 1962.
- 2. Well Logging & Reservoir Evaluation, Oberto Serra, Editions Technip, 2007.
- 3. Bateman, R. M., 2012, Openhole Log Analysis and Formation Evaluation, Society of
- Petroleum Engineers, Richardson, TX.
- 4. James Smolen (1996) Cased Hole and Production Log Evaluation, PennWell.
- 5. Schlumberger. 2009. Log Interpretation Charts. 2009 edition.

المصادر الإلكترونية ومواقع الإنترنت .Electronic Materials and Web Sites etc

www.spe.com

www.schlumberger.com

www.aapg.com

Course Policies:

Prepared by Assoc.Prof. Adel Al-Matary Quality Assurance Unit Assoc.Prof. Adel Al-Matary Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad

1	Class Attendance:				
	- Students are expected to attend classes regularly and promptly.				
	- The attendance should not be less than 80%.				
	- If the student has been absent, he is responsible for finding out any missed material				
	by consulting other students or going to the professor's office hours.				
2	Tardy:				
	- Attendance and arriving on time for the class are necessary. If the student is late, he				
	will be prevented from class.				
3	Exam Attendance/Punctuality:				
	- According to the rules the student gets absent in the exam of the course.				
4	Assignments & Projects:				
	- Papers survey or projects should be submitted by the time detriment by the professor.				
5	Cheating:				
	- According to the rules, cheating is a serious offense and will always result in an				
	imposition of a penalty. The penalties that can be started from the range of canceling				
	the result of the course to canceling the student's admission.				
6	Plagiarism:				
	- Plagiarism is a serious offense and will always result in an imposition of a penalty.				
	The penalties that can be started by making a zero mark for the work.				
7	Other policies:				
	- The student should by a commitment by the rules inside class and university.				
	Therefore, he is expected to show respect for his classmate, instructors &others.				

Quality Assurance Unit Assoc.Prof. Adel Al-Matary Dean of the Faculty Assoc.Prof. Bassim AlKhirbash Dean of the Development & Quality Assurance Center Assoc.Prof. Huda Al-Emad