

بامعة صنعاء

قائمة الاسئلة

امتحان نهاية الفصل الدراسي الأول ـ للعام الجامعي 1446 هـ ـ كلية البترول والموارد الطبيعية :: نمذجة ومحاكاة المكمن ـ (PNGE445)- الم ا.د. عادل محمد المطري

- 1) The Property model is built from the depth-converted seismic horizons and fault data
 - 1) ____ TRUE.
 - 2) + FALSE.
- 2) seismic data are generally point source data from a non-regular 'grid' over AOI
 - 1) <u>-</u> TRUE.
 - 2) + FALSE.
- 3) Porosity is a dynamic property where Permeability is a static property
 - 1) TRUE.
 - 2) + FALSE.
- 4) Each facies should have porosity and permeability distribution that is different from the other facies.
 - 1) + TRUE.
 - 2) FALSE.
- 5) Composite Log will form the 'basic input data' for reservoir modelling.
 - 1) + TRUE.
 - 2) FALSE.
- 6) Facies modelling is about capturing the fine-scale distribution of porosity, permeability and water or hydrocarbon saturation
 - 1) TRUE.
 - 2) + FALSE.
- 7) A facies model is the foundation of the property model
 - 1) + TRUE.
 - 2) FALSE.
- 8) Data management is probably the most important part of any modelling project
 - 1) + TRUE.
 - 2) FALSE.
- 9) The simulation grid is the definition of how we divide, or discretize, space in order to solve the differential equations numerically.
 - 1) + TRUE.
 - 2) FALSE.
- 10) Input for fault modelling generally comprises either fault sticks or mapped polygons
 - 1) + TRUE.
 - 2) FALSE.
- 11) The main reason to build a facies model is to condition the subsequent property model
 - 1) + TRUE.
 - 2) FALSE.
- 12) provide key mappable horizons and faults from which the structural framework of the model can be constructed.
 - 1) Facies model
 - 2) Composite Log
 - 3) + Seismic data
 - 4) Well data

13) are generally point source data from a non-regular 'grid' over the area of interest.

- 1) Facies model
- 2) Composite Log
- 3) ____ Seismic data
- 4) + Well data

- 14) These data will form the 'basic input data' for reservoir modelling.
 - 1) Composite Log
 - 2) Seismic data
 - Well data 3)
 - 4) NO ANSWER
- 15) The primary source for reservoir property data is the petrophysical interpretation of porosity and water saturation
 - 1) Composite Log
 - 2) **CPI** Logs +
 - 3) SCAL Data
 - 4) Well Test Data _
- 16) can be used to determine effective permeability
 - Composite Log 1)
 - **CPI** Logs 2) _
 - Well Test Data 3) +
 - Fault sticks 4)
- 17) is an area on the map where there is a gap in the surface interpretation.
 - 1) Upscaling
 - 2) + polygon
 - fault sticks 3) _
 - 4) Structural model
- 18) the intersection line between a fault plane and a seismic section
 - 1) Upscaling
 - 2) polygon -
 - fault sticks 3) +
 - 4) Structural model
- 19) is finding the single property value that best represents the heterogeneity of a group of cells in the fine-scale model to be used in a coarse-scale simulation grid.
 - 1) + Facies model
 - 2) Property modelling
 - Structural model 3)
 - 4) _ Conceptual Model
- 20) built from the depth-converted seismic horizons and fault data, generating a reservoir framework.
 - Facies model 1)
 - 2) _ Property modelling
 - 3) + Structural model
 - 4) Conceptual Model -
- 21) captures the reservoir variability based on the sedimentological analysis of the core and wireline data
 - 1) Facies model
 - 2) Property modelling +
 - Structural model 3)
 - Conceptual Model 4)
- 22) is capturing the fine-scale distribution of porosity, permeability and water or hydrocarbon saturation
 - 1) Facies model -
 - 2) + Property modelling
 - Structural model 3)
 - 4) Conceptual Model
- 23) About 50% of the modeling project schedule is spent on
 - + Data management 1)

3)

- Property modelling 2)
 - Structural model
- 4) Conceptual Model
- 24) in the oil and gas industry, reservoir modeling involves the construction of a computer model of a petroleum reservoir
 - 1) + TRUE.
 - 2) FALSE. _
- 25) All are Primary motives of building a model except
 - Visualization 1) +
 - 2) Well planning.
 - Reservoir simulation 3) _
 - 4) Volumetric estimates
- 26) the secondary motives of building a model are
 - + Visualization and Consistency of data 1)
 - 2) Reservoir simulation. _
 - 3) Field performance prediction _
 - Volumetric estimates. 4)
- 27) Interpretation of Sedimentary Environments is important due to
 - determin variety in porosity and permeability heterogenity 1)
 - 2) detect stratigraphic traps _
 - predicate reservoir compartments 3)
 - all answer are correct 4) +
- 28) goal of geologic reservoir characterisations is to predict rock properity variations in
 - 1) X and Y
 - 2) X. Y and Z +
 - 3) X and Z
 - 4) Y and Z _
- 29) the percentage of pore volume or void space that can contain fluid
 - 1) permeability
 - 2) +porosity
 - 3) sorting
 - 4) all answer are correct
- 30) the measure of how easily fluid moves through rocks
 - permeability 1) +
 - 2) porosity
 - 3) sorting
 - 4) all answer are correct
- 31) Where and why disccontinuities and fracture occur
 - 1) + Geomechanics
 - 2) Geomorphology
 - 3) Geostatstics
 - No Answer 4) _
- 32) Total saturation is always 100%
 - 1) + TRUE.
 - 2) FALSE.
- 33) There are different ways to build a 3D grid in Petrel.
 - 1) + TRUE.
 - 2) FALSE.
- 34) is the classical, more manual way of building a 3D grid.

- 1) _ _ symetrical griding
- 2) + corner point griding
- 3) no answer
- 35) the modelling process steps are
 - 1) + all answer
 - 2) fault modelling and pillar griding
 - 3) make horizon and zones
 - 4) no answer
- 36) Quantitative tools to create 3D geological models of the subsurface, including properties like
 - 1) permeability.
 - 2) grain size
 - 3) ___ porosity
 - 4) + All answers
- 37) Any property of the geological subsurface that exhibits spatial variability and can be measured in terms of real numerical values
 - 1) + Variable
 - 2) Spatial Variation
 - 3) Geologic model
 - 4) No Answer
- 38) Typically the subsurface is anisotropic, spatially complex and sedimentary bodies are internally
 - heterogeneous
 - 1) ___ Variable
 - 2) + Spatial Variation
 - 3) Geologic model
 - 4) No Answer
- 39) Subsurface (inter-well) heterogeneity can be measured
 - 1) TRUE.
 - 2) + FALSE.
- 40) large support, low resolution data
 - 1) + seismic data
 - 2) well data
 - 3) Both of them
 - 4) Non of them
- 41) small support, high resolution data
 - 1) seismic data
 - 2) + well data
 - 3) Both of them
 - 4) Non of them
- 42) Simulations of multi-phase flow
 - 1) static model
 - 2) + dynamic model
 - 3) Both of them
 - 4) Non of them
- 43) Simulations of multi-phase flow require high-quality dynamic reservoir models
 - 1) TRUE.
 - 2) + FALSE.
- 44) All are elements of the geological model except
 - 1) Bounding surfaces
 - 2) Distributions of physical properties between surfaces

- + Rock typing for each environment 3)
- 4) Conditioned to well data _
- 45) The deterministic model contains no random components; consequently, each component and input is determined exactly
 - + TRUE. 1)
 - 2) FALSE. _
- 46) generation of hypothetical data (realizations) from a statistical model by feeding it (pseudo)random input values
 - 1) Stochastic +
 - 2) Deterministic
 - Stochastic + random 3) _
 - 4) No answer
- 47) Geological modeling software is a worst-case scenario because
 - Designed by statisticians who know little about geology 1)
 - 2) Applied by geologists / engineers who know little about statistics -
 - 3) +Both of them
 - Non of them 4)
- 48) Common errors in numerical reservoir models
 - Discretisation errors 1)
 - 2) Upscaling errors -
 - 3) _ Input errors
 - + All answers 4)
- 49) Application of available technology and knowledge to a reservoir system in order to control operation and maximaise recovery
 - + Reservoir management 1)
 - Reservoir modeling 2) -
 - Reservoir simulation 3) _
 - 4) All answrs
- 50) the definition of how we divide, or discretize, space in order to solve the differential equations numerically.
 - +1) grid
 - 2) cell _
 - 3) model _
 - 4) no answer